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Introduction

From its roots, machine learning embraces the anything goes
principle of scientific discovery. Machine learning benchmarks
become the iron rule to tame the anything goes. But after
decades of service, a crisis grips the benchmarking enterprise.
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“The only principle that does not inhibit progress is: anything goes,” the
philosopher Paul Feyerabend proclaimed half a century ago. Taking on the
giants of scientific method, like Popper and Kuhn, the mantra became a point
of intense debate in philosophy circles and at dinner parties. Feyerabend
advocated for flexibility and creativity in knowledge production to a degree
he deemed anarchic. No single way of doing science is superior, he insisted.

The early days of machine learning, then called pattern recognition, cer-
tainly resonated with Feyerabend’s words. Pattern recognition was a child
of the cybernetics era, when science and science fiction came ever so close.
Emerging concepts from control, communication, and computation blended
in ambitious research programs that aimed at building intelligent machines.

Frank Rosenblatt, the inventor of perceptrons—precursor to modern arti-
ficial neural networks—was a figure emblematic of the time. His work on
perceptrons was unconstrained by scientific orthodoxy; instead, he embraced
exploration by all means, intuitive leaps, and interdisciplinary thinking. A
psychologist by training, Rosenblatt took inspiration, among many others,
from the ideas of the economist Friedrich Hayek about how intelligence
emerges in distributed computation. Hayek, too, was a staunch opponent of
what he called scientism, the excessive application of scientific methods and
principles to domains where they may be inappropriate. It’s hard not to see
Rosenblatt’s 600-page tome Principles of Neurodynamics as a testament to the
unconstrained scientific enterprise Feyerabend demanded.

In some significant ways today’s machine learning research has stayed true
to its roots. To this day, the field doesn’t prescribe how to get to a result.
It does not insist on rigor, method, or science in the way that researchers
derive what they propose. If tomorrow a breakthrough result appeared that
was somehow inspired by child development, quantum chemistry, or cell
biology, no one would raise an eyebrow. Besides, researchers are completely
unconstrained in what techniques they may apply. Any model architecture,
any optimizer, and any tweak is fair game.

As a result, it’s been exceedingly difficult to build a science of the things
that people actually do in practice. The model builders always seem to out-
pace all attempts to theorize their doings. In a search space with infinitely
many degrees of freedom, no single thing is necessarily fixed. Any particular
design choice can be compensated elsewhere. Hundreds of model architec-
tures came only to give way to a different architecture within months. What
seems necessary at any point in time—different kinds of regularization or
weight normalization—looks dated eventually. A flurry of papers promising
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to reveal all you need only culminated in the consensus that all you need is
all you need. This truism characterizes the craft. In some sense, machine
learning is never more than whatever set of tricks you currently need.

There’s an exhilarating freedom to anything goes that has surely attracted
many to the field of artificial intelligence. But the early days already experi-
enced the tragedy of anything goes. The initial excitement about a machine
that could separate squares from triangles created the field of pattern recog-
nition. The explosively growing field—brimming with activity—rapidly
spawned myriad ways of attacking different pattern recognition problems.
Research teams claimed all sorts of advances illustrated in specific experi-
ments and eclectic demonstrations. It became hard to tell what worked best
in an ocean of possibilities. For a practically-minded field, not knowing a
clear answer to what works best is a torturous predicament.

One ingredient was missing to tame the anything goes.

The iron rule

To tame the anything goes there had to be some kind of a test. The test
had better be empirical and quantitative. Aesthetics, theory, and subjec-
tive opinion ought not to play a role in the test. Since the goal of pattern
recognition was to classify objects in a scene, it made sense to score an algo-
rithm by how often it succeeded in doing so. Classification accuracy was a
natural target. Researchers quickly realized, however, that any model did
a lot better on data points it had encountered during training than those
it hadn’t. So, they agreed to separate training and test cases. Soon, model
builders began to compete over who could achieve the highest test accuracy.
This common sense agreement among researchers was the starting point of
machine learning benchmarks.

In developing benchmarks, pattern recognition discovered its own instance
of the iron rule of modern science. A term coined by the philosopher Michael
Strevens, the iron rule asserts that all disputes between scientists must
ultimately be settled by competitive empirical testing. In this view, modern
scientific communities organize around empirical protocols that lay out the
rules of scientific competition. These are a lot like the rules in a sporting
competition. Scientists are free to think and do whatever they want, but for
the purposes of scientific competition, they stick to the rules.

The iron rule makes a virtue out of what might seem like a problem: relent-
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less competition among scientists. By making empirical testing the objective,
scientists accumulate knowledge as they compete. Scientific institutions—
funding agencies, journals, and universities alike—reinforce the rule by
rewarding those who come out ahead in the metrics. Deciding who gets what
via empirical testing lowers friction in the gears of science, as it seems to
avoid drawn-out debate and keeps personal opinions in check. What results,
Strevens argues, is an efficient knowledge machine that powers modern
science.

Benchmarks are the iron rule of machine learning research and a radically
simple contract at that: Anything goes on the training set, competitive
ranking on the test set. The recipe is simple. What’s surprisingly hard is to
explain why and when it should work as an engine of progress.

The ImageNet era

Benchmarks emerged from little more than common sense and intuition.
They appeared in the late 1950s, had some life during the 1960s, hibernated
throughout the 1970s, and sprung to popularity in the late 1980s when
pattern recognition became machine learning. Today, benchmarks are so
ubiquitous, we take them for granted. And we expect them to do their job.
After all, they have in the past.

The deep learning revolution of the 2010s was a triumph for the bench-
marking enterprise. The ImageNet benchmark was at the center of all the
cutting-edge advances in image classification with deep convolutional neural
networks. Despite massive competitive pressure, it reliably supported model
improvements for nearly a decade. Throughout its long life, a sprawling soft-
ware ecosystem grew around ImageNet making it ever simpler to develop
and test models on the benchmark.

Even its tiny cousin, CIFAR-10, did surprisingly well for itself. Model
builders often put CIFAR-10 into the development loop for architecture
search. Once they found a promising candidate architecture, they would
then scale it up to ImageNet. Folklore has it that some of the best ImageNet
architectures were first developed on CIFAR-10. Even though CIFAR-10
features only 10,000 tiny pixelated test images from ten classes, such as frogs,
trucks, and ships, the dataset was any model builder’s Swiss army knife for
many years. The platform PapersWithCode counts more than 15,000 papers
published with CIFAR-10 evaluations. This does not count the numerous
evaluations that went into every single one of these papers. It also doesn’t
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Figure 1.1: Progress on ImageNet according to Papers With Code. Source:
paperswithcode.com

count the enormous amount of engineering work that used the dataset in
one way or another.

It might seem reckless that so much work should turn on so little data.
With the benefit of hindsight, though, we can even verify that the ranking
of popular models on CIFAR-10 largely agrees with the ranking of the
same models on ImageNet. Model rankings on ImageNet in turn transfer
well to many other datasets. Researchers even created a toy dataset called
ImageNot, full of noisy web crawl data, designed to stray as far as possible
from ImageNet, while matching only its scale and diversity. Retraining all
key ImageNet era architectures on ImageNot from scratch, model rankings
turn out to be the same.

The stability of model rankings is a robust empirical fact of the ImageNet
era. Numerous papers show that model accuracies change erratically from
one benchmark to the next. At the same time, relative comparisons between
models turn out to be surprisingly reliable. If one model beats another in one
benchmark, it’s likely to beat the model in a different context, too. There’s
evidently a certain kind of robustness to the iron rule. This wasn’t clear to
begin with. It’s just something researchers got used to.
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Figure 1.2: Stability of ImageNet model rankings (left) and relative accuracy
improvements over AlexNet (right).

When rankings work, benchmarks free you from second-guessing yourself:
Suppose you take the highest ranked model off the shelf and you spend a few
months adapting it to your application. You find out that it doesn’t work. A
good benchmark reassures you that no other model would’ve worked either.
This saves you a lot of time, since you don’t have to try out the other few
hundred models on the shelf. This is the powerful promise of a good ranking.
The benchmark may not anticipate how well a model will work for your
application. But it can tell you what’s the best model to start from, thus
reducing trial and error.

Faith in the top of the leaderboard was the religion of the deep learning
revolution. As is often the case, though, faith is strongest just before the
Ccrisis.

The LLM era

Eventually, attention shifted from image classification to natural language
processing (NLP), as the new transformer architecture scored a victory over
the sluggish recurrent neural networks that had long been the workhorse for
sequence problems of all kinds. Transformers were much easier to scale up
and quickly took over. The simple training objective to repeatedly predict
the next token in a sequence of text meant that training data needed no
human labels. Companies quickly scraped up any sequence they could find
on the internet, from chat messages and Reddit rants to humanity’s finest
writing. New scaling laws suggested empirical relationships between the
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Figure 1.3: Model size growth in the transformer revolution. GPT-4 model
size according to rumors.

dataset size, the number of model parameters, and pretraining compute that
jointly minimize training loss. For a while, it seemed the only thing left to
do was to sit back and watch new capabilities emerge in explosively growing
models.

Unlike in image classification, in NLP there was never a single most central
benchmark task. Translation, parsing, entailment, and sentiment are only
a few of the many tasks we associate with language understanding. Each
has all sorts of different benchmarks. Most of these test tasks are quite a
step removed from how the model trains by predicting the next token in a
never-ending stream of text. This divergence between training objective and
test task spelled trouble.

Right after training, large language models tend to ramble on, often gener-
ating irrelevant, erratic, or toxic sequences. This is perhaps not surprising to
anyone who has been on the internet. The paradigm of alignment became
the catch all promise to mitigate whatever problems models have right after
training. Alignment fine-tunes pretrained models in one way or another on
data such as human demonstrations, comparisons, or thumbs up clicks from
chatbot platforms. Computationally, alignment costs only a tiny fraction of
the resources allocated to training. Yet, it has a transformative impact on
benchmark performance and subjective human evaluations.

If language has no single most important task, what benchmark should we
pay attention to? An exploding task plurality directly threatens the iron rule
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of modern science. What exactly should scientists compete over when there
are hundreds of options on the menu? If decathlon isn’t exactly a crowd
favorite at the Olympics, imagine watching “centathlon”—an eclectic and
somewhat arbitrary collection of a hundred events with no clear winner in
the end.

The growing unease with language benchmarks fueled the desire for one
authoritative ranking compiling all available evaluation data into one. Re-
searchers hoped that piling up more and more tasks would uncover a true
ranking. This is the premise of multi-task benchmarks. But aggregation
of diverse rankings is a notoriously tricky problem—bane of all voting
systems—and there are no perfect solutions. Sure enough, evidence soon
emerged that aggregation breaks the stability of model rankings we’ve come
to expect from our ImageNet upbringing.

And that was only the beginning of the trouble.

As multi-task benchmarks provided no clear solution to a growing eval-
uation crisis, much of the competition began to gravitate over only a few
benchmarks. Among them was the MMLU benchmark, which stands for
Measuring Massive Multitask Language Understanding. MMLU consists of
thousands of college-level multiple choice questions from numerous subjects.
In a departure from traditional benchmarks, all of them are test questions.
There is no proper training set; after all, large language models are trained
by predicting next tokens on some chunk of the internet.

A general knowledge question in MMLU might ask:

As of 2016, about what percentage of adults aged 18 years or
older were overweight? A: 10% B: 20% C: 40% D: 80%.

A question from high school computer science could look like this:
Let x = 1. What is x << 3 in Python 3? A: 1, B: 3, C: 8, D: 16.

Scoring high on MMLU hinges on knowledge the model acquired during
training, as well as its ability to understand the prompt. The latter turns
out to be surprisingly tricky. Progress on the benchmark catapulted from
barely better than random guessing to over 90% in just a few years. What
mesmerized observers is that accuracy gains only picked up as models
reached a certain size. This sudden increase in accuracy became known
as emergent abilities, fueling narratives about unpredictable and sudden Al
advances.

The fact that models have reached 90% accuracy on MMLU may be an
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Figure 1.4: Compute versus accuracy on MMLU and GSM8k (Grade School
Math 8k), a popular math benchmark.

indication that progress on the benchmark has saturated and we should
stop using it. However, once established, benchmarks have a long life.
Researchers continued to use CIFAR-10 actively well after the 90% mark had
been surpassed. Model comparisons don’t necessarily need wide margins.
Even small signals can indicate that one model is better than another.

It’s not like people think that CIFAR-10 and MMLU are particularly faithful
representations of the real world challenges you’ll encounter. Rather, these
benchmarks create a point of reference for the community. They lay out
the rules of the game. The right question is not how to make benchmarks
more realistic. The better question is how to set up a game whose winner
we should care about. CIFAR-10 turned out to be a good game to play. But
there was a deeper reason why MMLU could never become CIFAR-10.

Unlike CIFAR-10, MMLU has no training data. It’s just a test set like most
other LLM benchmarks. Providing training data for a language benchmark
might seem pointless anyway, given that models train on the internet. What'’s
in the data has become part of the competition. Every competitor now has
its own data mix, often as closely guarded a secret as the Coca-Cola recipe.
What this means is that some models may have studied better to the test than
others. Looking at it one way, this is fair game. Why shouldn’t knowledge
about the downstream test inform your upstream training practices? In
another way, however, it breaks the no second-guessing guarantee of a good
benchmark. A lower ranking model may well have been your best choice,


https://mlbenchmarks.org

Model Ranking on GSM8K

(NN
¥

SESOPOIRODS VORRLLLERT S VORLPR VR NESE SR

After
&8 SRS, SN RS
S SN EN NN SN D S N il SN Y N 98 Vg e N Bug Vg~ Ny
BT E S EER S SO E SN G AT R S ENETINGE I ¢ B FES SNV I L G BN S
YIRS SS INrcfu'va'Nf?\c““cqwi~,gnvru?’”¢ SEn g SIS R gL v &
SEFaT O ST SRS T WS T ST AT TETICL S FESEETTsETSSEIEE
SEE L STR55S858F £ IAEE % FITEITIVEEY ST REN JaIT T e
QQQ R EFFRIFIFIT RS oF S5EE SEFISE T I & &8 g{g\v\Q@ &5 Y
&5 SF ¢ T FEe § egsy 3 TRE S 7T
c & & 5 < &
el h
~ g

Figure 1.5: Model rankings on the GSM8k benchmark before and after giving
each model the same preparation for the benchmark.

but it showed up less prepared to the exam.

The validity of model rankings was an empirical phenomenon of the
ImageNet era, but it’s not clear that we should get this lucky again.

What further troubles evaluation in the chatbot era is that models deployed
at scale always influence future data, a phenomenon called performativity.
It’s a century-old problem that has gained new urgency. Performativity
challenges model evaluation, in particular, since there is no longer model-
independent ground truth. Data—from text to labels—are now contingent
on the model. Many worry that ChatGPT will drown the internet in its own
text generations, leading to a vicious cycle of data and model degradation.
The more we use ChatGPT, the more text will look like ChatGPT. Research
on performativity sheds light on this problem of data feedback loops that
many see as a fundamental risk to the data ecosystem.

Where some see a problem, others see opportunity. Dynamic benchmarks
try to make a virtue out of data feedback loops by creating tests that evolve
as models improve. Adding examples where models fail, the benchmark
steadily becomes increasingly tricky. Whether model-data feedback loops
will be vicious or virtuous is uncertain, but further progress depends on the
answer.

The final problem benchmarking now faces is an existential one. As model
capabilities exceed those of human evaluators, researchers are running out
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Figure 1.6: Instability of model rankings. Left: Effect of adding weak models
to the HELM multi-task benchmark. Right: Effect of using an LLM (LLaMa-
3) as a judge.

of ways to test new models. There’s hope that models might be able to
evaluate each other: Take the best available model and use it to judge new
candidates. But this idea of using models as judges runs into serious hurdles.
LLM judges are biased, unsurprisingly, in their own favor. All attempts to
debias evaluations ultimately point back at what’s missing in the first place:
a reliable benchmark.

Will the iron rule—the old engine of progress in machine learning—grind
to a halt?

In a moment of crisis, we tend to accelerate. We do more of the same,
hoping that the problem will go away on its own. What if instead we step
back and ask why we expected benchmarks to work in the first place—
and what for? This question leads us into uncharted territory. For the
longest time, we took benchmarks for granted and didn’t bother to work
out the method behind them. We got away with it mostly by sheer luck,
but we might not this time. Over the last decade, however, a growing body
of work has begun to map out the foundations of a science of machine
learning benchmarks. What emerges is a rich set of observations—both
theoretical and empirical—raising intriguing open problems that deserve
the community’s attention.

If benchmarks are to serve us well in the future, we must put them on
solid scientific ground.
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