
Working draft available at https://mlbenchmarks.org

— 2 —
Populations and predictions

The mathematical foundations of machine learning follow the
astronomical conception of society: Populations are probability
distributions. Optimal predictors minimize loss functions on a
probability distribution.

2 Populations and predictions 1
2.1 Prediction . 3

Optimal predictors . 5
Regression . 7
Calibration . 8

2.2 Risk minimization . 10
2.3 Errors and metrics . 12
2.4 Model training . 14

Training objective . 14
2.5 Notes . 17

Source: The Emerging Science of Machine Learning Benchmarks. M. Hardt,
2025. URL: https://mlbenchmarks.org. Compiled on 2025-05-01.

1

https://mlbenchmarks.org
https://mlbenchmarks.org

Working draft available at https://mlbenchmarks.org

The philosopher Ian Hacking called it the astronomical conception of society.
It’s the idea that we can think of populations as probability distributions
and find regularities in them in the same way that an astronomer would find
patterns by observing the universe.

The idea goes back to the 19th century Belgian astronomer Adolphe
Quetelet, one of the founders of quantitative social science, who called
it social physics. Quetelet believed that there were laws to be discovered
in society, such as the law of crimes in Paris, and that we could find these
laws by fitting statistical models to data. Modern statistics adopted the
perspective and the discipline built the formalisms around it that students
now learn in virtually every class that touches on data. By the end of the
1930s, statistics had settled on its foundations. Scientists are so used to the
idea of populations as probability distributions that they no longer question
it. Machine learning, in particular, follows the same astronomical concep-
tion, especially when it comes to the bulk of work on model building and
evaluation, from linear regression to ChatGPT.

What was radical about the idea when it came up is that human popu-
lations clearly are not probability distributions. In a sense, they couldn’t
be further. The world we live in is a complex, interconnected dynamical
system of people, institutions, infrastructure, and nature. What we observe
changes over time and in response to our actions. What we see even changes
in response to the models that we deploy in the world. It’s important to keep
this in mind to understand why sometimes things fail. Datasets collected at
different times or different locations generally don’t follow the same distri-
butions. Machine learners call this distribution shift, but the expression starts
from a wrong premise. There is no distribution to begin with. The dynamic
nature of society contradicts the stationarity of the astronomical conception.
When things go wrong in machine learning, it’s often fundamentally this
contradiction in disguise.

Yet, the astronomical conception is vindicated by its relentless utility. From
its early applications in insurance pricing to recommender engines on digital
platforms and AI chatbots, fitting statistical models to datasets has always
made someone rich. It’s hard to argue with success. It’s also hard to argue
with its simplicity. The formal setup we need for much of this book fits in a
few pages and is well worth knowing in your sleep.

What makes the astronomical conception so useful is that it gives us a
simple way to make predictions. A prediction is an educated guess about
something we don’t know for sure given information we do have. Bernoulli

2

https://mlbenchmarks.org

Working draft available at https://mlbenchmarks.org

called it the art of conjecturing. In this sense, prediction is not just about
the future. It also applies to things that have already happened, but we’re
uncertain about them. A camera took an image, but we’re unsure from the
pixels whether we’re looking at a mouse or a hamster. A company filed their
quarterly report with the Securities and Exchange Commission, but we’re
unsure from the numbers if financial fraud has occurred. In both cases,
there’s a definitive truth value about which we’re unsure.

Prediction also applies in cases where there is no definitive answer. To
give an example, suppose you know somebody’s age, nothing else. You want
to make a best guess about whether the person has a valid driver’s license.
Statistics lets you do that, once you fix a population. For any given age, say
18, you look up if the majority of 18-year-olds in the population has a driver’s
license. If so, you guess yes, otherwise no. This common sense rule turns out
to be the optimal predictor if the goal is to maximize the probability of a
correct guess. Here the probability refers to a random draw of an individual
from the population.

The example makes it clear that your best guess is specific to a population.
It depends on whether you consider the population of all citizens of the
United States of America or the population of Tokyo residents. It also
depends on time. Your best guess in 2025 may not be your best guess in
1998.

2.1 Prediction

To formalize prediction, we start from a distribution D called data-generating
distribution or population. A draw from the data-generating distribution
gives us one data point. A labeled data point is a pair (x,y), where x ∈ X is an
array of feature values that could describe a row in a table, a text sequence,
or an image. The value y ∈ Y is the label assigned to x. The set Y contains
the possible labels that can occur. The support of the distribution is some
subset of the set X ×Y consisting of all possible data points, called universe.
A predictor is a function f : X →Y that maps an input x to a prediction f (x).

It’s often convenient to write the data-generating distribution as a pair
(X,Y) of jointly distributed random variables denoting a random draw
from D. This lets us write things succinctly, like P{f (X) = Y }, the prob-
ability of a correct guess. The random variable Y is then called target variable
as it is the target of our predictor. Throughout, I omit mentioning the
population when it is clear from context.

3

https://mlbenchmarks.org

Working draft available at https://mlbenchmarks.org

There are two common settings of prediction:

• In a classification problem, the set Y contains categorical values, such
as {hamster, mouse}. These are the classes of the classification problem.
In the context of classification, a predictor is also called classifier. The
most well-studied setting in learning theory is binary classification,
where there are two classes that we can write as 0 and 1. Sometimes
it’s mathematically convenient to instead work with the numbers −1
and 1 for the two classes. A classification problem with more than two
classes is a multi-class problem.

• In a regression problem, the label set Y = R is the real line. Rather
than predicting a discrete value, our goal is to estimate quantitative
information, such as the income of a person, the temperature of an
engine, or the stock price of a company share.

In a classification problem we try to be correct, in a regression problem we
try to be close. Here are some examples of typical prediction problems:

• Given an English sentence, classify the sentiment of the sentence as
positive or negative.

• Given an array of pixels, classify if the pixels make up an image of a
hamster or the image of a mouse.

• Given a time series of meteorological measurements, predict the atmo-
spheric pressure one hour from the last reading.

• Given features of a user and a video, predict the time the user is going
to spend watching the video.

Predicted watch time is an interesting example. Ultimately, the goal is
not just to predict watch time for the prediction’s sake. There’s always some
other purpose with prediction. In this case, a video streaming platform
might recommend content to a user in descending order of predicted watch
time. The video of highest predicted watch time shows up first, the one with
second highest predicted watch time comes next, and so forth. Naturally,
the user is most likely to click on the item that shows up first on screen and
much less likely to click on a lower ranked video. The result is a kind of
self-fulfilling prophecy: The platform predicts high watch time and therefore
displays the video prominently to the user, who is in turn more likely to
watch the video. Formally, the prediction influences the target variable. This
kind of dynamic is hard to avoid when applying prediction in real world
systems.

Our formal setup, however, excludes any such dynamic. The reason is that
we assume a joint distribution over labeled data points (x,y). This means

4

https://mlbenchmarks.org

Working draft available at https://mlbenchmarks.org

that the target y is determined at the same time as the features x. Nothing
we do based on x, like making a prediction, could possibly influence y in
this formal setup. This is a fundamental problem with the astronomical
conception. Predictions in the social world typically influence the outcome
that they try to predict, a phenomenon called performativity. But for now, we
continue with the astronomical conception.

If you think through real world applications of prediction, you’ll likely
find that almost none of them are perfectly clean examples of the formalism.

Optimal predictors

A good question to start with is what kind of predictor we would ideally
like to have if we had full knowledge about the population. This requires
that we formally pin down a mathematical objective. In classification, where
the set Y is discrete, a natural objective is to maximize the probability of a
correct guess. This objective corresponds to maximizing the accuracy of the
predictor.

Definition 1. The accuracy of a predictor f on a population (X,Y) is the proba-
bility P{f (X) = Y }. The classification error is P{f (X) , Y }.

Formally, the goal is to find the accuracy maximizing predictor on the
population (X,Y). That is, we want to solve the optimization problem:

max
f : X→Y

P{f (X) = Y }

The maximum runs over all possible functions with no constraints on the
kind of function whatsoever. The lack of any constraints is what gives this
problem a clean and intuitive solution mathematically. On input x, the
optimal predictor picks the label that’s most likely to match the value of Y
conditional on X = x.

Proposition 1. Given a discrete population (X,Y), the accuracy maximizing
predictor is given by any function f ∗ that satisfies

f ∗(x) = argmax
y∈Y

P{Y = y | X = x}

for all inputs x with P(X = x) > 0.

Proof. For any function f : X →Y , rewrite accuracy as

P{Y = f (X)} = E [P{Y = f (x) | X = x}] ,

5

https://mlbenchmarks.org

Working draft available at https://mlbenchmarks.org

Some college Associate Bachelor’s Master’s Professional Doctorate
Educational Attainment

0.0

0.5

1.0

V
al

u
e

23.27
31.59

48.87

64.70
68.86

72.55

0 0 0

1 1 1

Maximum accuarcy prediction of ‘Income > 50k’ from Education

Fraction Income > 50K

Prediction (1 if > 50%)

Figure 2.1: Accuracy maximizing prediction of (Income >50k) on the Cali-
fornia U.S. Census population from 2018

where the expectation is taken over a random draw x ∼ X from the marginalX.
Since any such x is in the support of X and X is discrete, we must have P{X =
x} > 0. Therefore, the conditional probability P{Y = f (x) | X = x} is well-
defined.

Note that the expectation is a sum of non-negative terms. Since f is
unconstrained, we can maximize the expectation pointwise for each x ∈ X .
For a fixed x ∈ X in the support of X, by assumption, f ∗(x) maximizes the
expression P{Y = f (x) | X = x}.

This matches our earlier intuition: The accuracy maximizing predictor
outputs the most likely label given the available information. The optimal
predictor isn’t unique, since we get to break ties arbitrarily and the function
value on inputs outside the support of X is arbitrary.

The optimal predictor generalizes to continuous populations and the intu-
ition is the same. When the population (X,Y) has a joint probability density
function p(x,y), standard mathematical arguments give us a conditional
density p(y|x) that’s defined almost everywhere in x. Formally, this requires
some tedious measure-theoretic maneuvers that researchers in machine
learning typically skip.

Stated this way, accuracy maximizing predictors pointwise maximize the

6

https://mlbenchmarks.org

Working draft available at https://mlbenchmarks.org

Some college Associate Bachelor’s Master’s Professional Doctorate
Educational Attainment

0

25000

50000

75000

100000

125000

150000

175000
In

co
m

e

36871 44505

72658

96980

142749
128670

Minimal squared error prediction of income given education

Figure 2.2: Mean squared error minimizing prediction

conditional density:
f ∗(x) = argmax

y
p(y|x) .

Some call the expression p(y|x) the posterior probability of the class y given
the data x.

The equation characterizes the accuracy maximizing predictor at the pop-
ulation level. It does not give us an efficient algorithm for finding the best
predictor. It’s a characterization of optimality with full knowledge of the
population. Much of learning theory is about the algorithmic question of
finding good predictors when we don’t have full knowledge of the popula-
tion. Understanding what the best is that we can hope for, however, is an
important first step. For now, we stay at the population level.

Regression

In regression, the label set Y = R is the real line. The goal is to approximate
the real-valued label rather than to match a discrete label exactly. A natural
objective minimizes the mean squared difference between our prediction
and the label.

Definition 2. The mean squared error of a function f : X →Y on the popula-
tion (X,Y) is the expected squared difference 1

2 E
[
(f (X)−Y)2

]
.

We can again ask what predictor minimizes mean squared error. This

7

https://mlbenchmarks.org

Working draft available at https://mlbenchmarks.org

turns out to be the regression function

r∗(x) = E[Y | X = x]

that outputs the mean value of Y conditional on X = x.

Proposition 2. The regression function r∗(x) = E[Y | X = x] minimizes mean
squared error on the population (X,Y).

Proof. The proof follows along the same lines as the argument for the accu-
racy maximizing predictor. We can minimize mean squared error for a fixed
setting X = x of the features:

min
y

E

[
(y −Y)2 | X = x

]
Taking the derivative with respect to y and setting it to 0,

y = E[Y | X = x] ,

after simplifying the expression using the linearity of expectation.

Note that in binary prediction, where Y = {0,1}, we can write the accuracy
maximizing predictor as

f ∗(x) = 11
{
E[Y | X = x] > 1/2

}
,= 11{r(x) > 1/2} ,

where 11{·} is the indicator function. What this means is that the accuracy
maximizing predictor is a rounding of the regression function.

Calibration

Calibration is an important property of regression functions. Restricting our
attention to binary outcome variables,

Definition 3. Say that a function f : X → [0,1] is calibrated with respect to a
target variable Y ∈ {0,1} if for all values p ∈ [0,1] with P{f (X) = p} > 0 we have

P{Y = 1 | f (X) = p} = p .

This condition means that the set of all instances assigned the value p has
a p fraction of positive instances in it. Calibration expresses uncertainty

8

https://mlbenchmarks.org

Working draft available at https://mlbenchmarks.org

0.0 0.5 1.0
Predicted probability

0.0

0.2

0.4

0.6

0.8

1.0
Fr

eq
u

en
cy

of
p

os
it

iv
e

ou
tc

om
es

(a) Well calibrated predictor

Predictor

Perfect

0.0 0.5 1.0
Predicted probability

(b) Overconfident predictor

Predictor

Perfect

Figure 2.3: Calibration plots showing a well calibrated predictor (left) and a
poorly calibrated predictor (right)

in a basic way. Given that we observe the prediction p, we know that on
average over all instances with this prediction, there is a p fraction of positive
outcomes. If we see a prediction of 0.54, we learn that there is significant
uncertainty about the outcome. It’s essentially a coin toss. In a sense, we
can interpret a calibrated prediction as a probability. It’s the probability of a
positive outcome given the prediction.

Calibration has nothing to do with accuracy. To see this, note that the
constant predictor f (x) = p1 with p1 = P{Y = 1} is always calibrated. In this
example, all instances get the same score value p1 and this score value by
definition corresponds to the fraction of positive outcomes in the entire popu-
lation. This shows that low accuracy predictors can be calibrated. Conversely,
the accuracy maximizing predictor violates calibration whenever p(y|x) is nei-
ther 0 nor 1. Remember that the accuracy maximizer f ∗ rounds everything
to 0 or 1 so that typically P{Y = 1 | f ∗(X) = 1} < 1 and P{Y = 1 | f ∗(X) = 0} > 0.
In other words, accuracy maximization tends to be overconfident.

In particular, don’t confuse a calibrated prediction with any such notion
as an individual probability. Calibration, in general, says nothing about the
any specific instance x. It only talks about the set of instances with the same
prediction.

Calibration is a fairly weak guarantee. After all, there’s always a constant
predictor that satisfies the condition. We can ask for a stronger condition
by requiring calibration in subgroups. To designate groups, introduce a

9

https://mlbenchmarks.org

Working draft available at https://mlbenchmarks.org

discrete random variable A that partitions the domain into strata {A = a} of
the population. Say that a function f satisfies group calibration with respect
to A if it satisfies

P{Y = 1 | f (X) = p,A = a} = p ,

for all score values p ∈ [0,1] and groups a. Calibration is the same condition
when the random variable A only takes on one value.

Fact 1. The regression function r∗(x) = E[Y | X = x] satisfies group calibration
with respect to any discrete random variable A fully determined by X, i.e., A =
h(X) for some measurable function h.

In fact, the regression function is the only function that satisfies calibration
with respect to all possible groups. This is because it satisfies calibration
with respect to every possible atom {X = x} in the population. We can’t hope
for more.

2.2 Risk minimization

We can generalize our discussion of optimal prediction further by introduc-
ing the idea of a loss function. A loss function takes two inputs, ŷ and y,
and returns a real number `(ŷ, y) that we interpret as a quantified loss for
predicting ŷ when the target is y. A loss could be negative in which case it
may be helpful to think of it as a reward.

We already encountered two loss functions, classification error and mean
squared error. Classification error is the expected value of the loss function

`(ŷ, y) = 11{ŷ , y} ,

known as zero-one loss. Indeed, writing the probability of an event as the
expectation over the indicator of the event, we have

P{f (X) , Y } = E [11{ŷ , y}] .

Similarly, mean squared error is the expected value of the squared loss

`(ŷ, y) =
1
2

(ŷ − y)2 .

Given a loss function, we can again minimize the expected loss over the
population.

10

https://mlbenchmarks.org

Working draft available at https://mlbenchmarks.org

Definition 4. Define the risk of a function f : X →Y as

R(f) := E[`(f (X),Y)] .

Here, the expectation is taken jointly over X and Y .

Risk minimization is the objective of minimizing risk:

min
f : X→Y

R(f)

We can solve the risk minimization problem with the same trick that applied
to classification error and mean squared error: Solve the problem for each
individual x ∈ X. Since the predictor f is unconstrained, nothing prevents
us from doing so. For simplicity, I’ll only include the binary case here.

Proposition 3. The risk minimizing binary predictor for a binary loss function `
is the function

f ∗(x) = 11
{
P {Y = 1 | X = x}
P {Y = 0 | X = x}

≥ `(1,0)− `(0,0)
`(0,1)− `(1,1)

}
.

Proof. To see why this predictor is optimal, we make use of the law of iterated
expectation:

E[`(f (X),Y)] = E [E [`(f (x),Y) | X = x]]

Here, the outer expectation is over a random draw of x ∼ X and the inner
expectation samples Y conditional on X = x. Since there are no constraints
on the predictor f , we can minimize the expression by minimizing the inner
expectation independently for each possible setting that X can assume.

Indeed, for a fixed value x, we can expand the expected loss for each of the
two possible predictions:

E[`(0,Y) | X = x] = `(0,0)P{Y = 0 | X = x}+ `(0,1)P{Y = 1 | X = x}
E[`(1,Y) | X = x] = `(1,0)P{Y = 0 | X = x}+ `(1,1)P{Y = 1 | X = x}

The optimal assignment for this x is to set f (x) = 1 whenever the second ex-
pression is smaller than the first. Writing out this inequality and rearranging
gives us the predictor specified in the lemma.

There’s another way to state the optimal predictor. Using Bayes’ rule, we
have

p(y|x) = p(x|y) ·
py
p(x)

.

11

https://mlbenchmarks.org

Working draft available at https://mlbenchmarks.org

Here, py = P{Y = y} is marginal probability of seeing label y, also called base
rate of y. The expression p(x|y) is the likelihood function. We can equivalently
state the optimal predictor in terms of a ratio of likelihood functions:

f ∗(x) = 11
{
p(x|1)
p(x|0)

≥
p0

p1
· `(1,0)− `(0,0)
`(0,1)− `(1,1)

}
This gives another intuitive interpretation of optimal prediction. The best
predictor chooses the class that makes the data x more likely. But the
threshold depends on the base rate of each class. If class 1 is highly unlikely
in the data, the predictor requires a higher threshold to output 1. Ignoring
the base rate when making predictions is the so-called base rate fallacy. If
the symptoms of a patient match those of a rare disease somewhat better
than those of the common flu, the doctor’s best guess is probably still the
common flu.

The threshold in optimal prediction also depends on what’s at stake, the
loss values. Four values fully specify a binary loss function. If, for example,
the loss `(1,0) of predicting 1 when the truth is 0 is high, the optimal
predictor is again more conservative about positive predictions. It’s worth
taking a closer look at the four possible cases of binary prediction.

2.3 Errors and metrics

In a binary prediction problem, four cases can occur depending on the value
of the prediction (positive/negative) and the true value (positive/negative):

• A true positive occurs when our prediction is positive (Ŷ = 1) and the
true value is also positive (Y = 1).

• A false positive occurs when our prediction is positive (Ŷ = 1) and the
true value is negative (Y = 0).

• A true negative happens when our prediction is negative (Ŷ = 1) and so
is the true value (Y = 0).

• A false negative happens when our prediction is negative (Ŷ = 0) but
the true value is positive (Y = 1).

The confusion matrix summarizes the four cases:

Ŷ = 1 Ŷ = 0

Y = 1 True Positive (TP) False Negative (FN)
Y = 0 False Positive (FP) True Negative (TN)

12

https://mlbenchmarks.org

Working draft available at https://mlbenchmarks.org

Ŷ = 1 Ŷ = 0

Corresponding to these four cases, there’s additional terminology:

• The true positive rate is the probability P{Ŷ = 1 | Y = 1}, also called
recall.

• The false positive rate is P{Ŷ = 1 | Y = 0}.
• The true negative rate is P{Ŷ = 0 | Y = 0}.
• The false negative rate is P{Ŷ = 0 | Y = 1}.

Note that true positive rate equals one minus false negative rate. The same
relationship holds for true negative rate and false positive rate.

We can also turn the conditional probabilities around and get other mean-
ingful concepts. One particularly useful concept is precision or positive
predictive value P{Y = 1 | Ŷ = 1}. Bayes’ rule relates precision and recall:

P{Y = 1 | Ŷ = 1} = P{Ŷ = 1 | Y = 1} · P{Y = 1}
P{Ŷ = 1}

What this suggests is that making more positive predictions, i.e., increas-
ing P{Ŷ = 1}, gives us high recall and low precision. Making fewer positive
predictions increases precision at the cost of lowering recall. This tension
is known as precision-recall trade-off. Another way to see this is by recalling
that the optimal predictor has the form

f ∗(x) = 11
{
p(x|1)
p(x|0)

≥ τ
}

for some threshold value τ . By lowering τ we eventually achieve perfect
recall. By increasing τ we eventually achieve perfect precision. The optimal
predictor strikes some balance between the two.

Statisticians often express precision and recall in one metric called F1-
score, defined as the harmonic mean of precision and recall:

F1 =
2

precision−1 + recall−1 = 2 · precision · recall
precision + recall

Sliding the threshold in optimal prediction also gives us a trade-off be-
tween true positive rate and false positive rate. A sufficiently small threshold
gives us true and false positive rate 1. A sufficiently high threshold gives us

13

https://mlbenchmarks.org

Working draft available at https://mlbenchmarks.org

true and false positive rate 0. Varying the threshold strikes some trade-off
between the two. The entire curve of possible trade-offs is called ROC curve.

Many other such metrics derive from the confusion matrix. The terminol-
ogy can be dense and overwhelming, but it suffices to understand the few
underlying concepts.

2.4 Model training

Model training is the part of machine learning that this book is not about.
Model training describes the set of heuristics practitioners apply to find
good predictors. Training is the optimization process that takes a set of
data points and produces a model. People use the term model freely to
describe any trained system that maps inputs to outputs. Model training is
an important core part of machine learning. Supervised learning refers to
training methods that use labeled data. There’s also unsupervised learning,
where we only have x but not y in the data.

Throughout this book we’ll always assume that someone else has done the
model training for us. I call them the model builders. They are highly skilled,
resourceful, and ambitious researchers, engineers, and practitioners who
keep pushing the boundaries of model training. There’s also a lot of beautiful
theory about the optimization methods that model training requires. It’s an
entire subject in its own right. I think of the community of model builders
as a computational resource. Once someone has put forward an interesting
machine learning problem and the incentives point toward solving it, model
builders will routinely find ways of doing so.

This focus of this text is on evaluating, comparing, ranking, and under-
standing trained models. It will nevertheless be helpful, especially later on,
to know a little bit about how training works. There’s no perfectly clean
abstraction boundary between model training and model evaluation.

Training objective

At the core of model building is the training objective called empirical risk
minimization. Rather than having knowledge of the full population, we
assume that we only have a collection S consisting of n data points, where n
is much smaller than the size of the population.

Definition 5. Given a set S = {(x1, y1), . . . , (xn, yn)} ⊆ X × Y of n labeled data
points, the empirical risk of a function f : X →Y with respect to a loss function `

14

https://mlbenchmarks.org

Working draft available at https://mlbenchmarks.org

is the sample average of the loss function

RS(f) =
1
n

n∑
i=1

`(f (xi), yi) .

Analogous to risk minimization, define empirical risk minimization as the
optimization problem:

min
f ∈F

RS(f) .

One immediate difference is that we constrain f ∈ F to be from some model
family F . This model family could be the family of linear models, some
architecture of deep convolutional networks, a transformer-based language
model, and so forth. I won’t go into detail about these different model
families.

There’s another important difference. In model training, you almost never
directly minimize a loss function like classification error. The main reason is
that this objective doesn’t go well with the kind of gradient-based optimiza-
tion methods people use in practice. These methods minimize empirical risk
one small gradient step at a time and therefore require differentiable losses.

The most common training loss in machine learning today is the cross
entropy loss. For binary prediction, where y, ŷ ∈ {0,1}, the loss is

`(ŷ, y) = − [y log ŷ + (1− y) log(1− ŷ)] .

In the binary case, logistic loss is another name for it. For a multiclass problem
with C classes, the cross entropy loss is:

`(ŷ, y) = −
C∑
c=1

yc log ŷc

Here, yc is a one-hot encoded ground truth label, 1 for the correct class, 0
otherwise. We can therefore think of y as a distribution that is a point
mass on the correct class. The prediction ŷ is also a distribution where ŷc the
model’s predicted probability for class c. Since ŷ and y are both distributions,
the cross entropy loss is closely related to the Kullback-Leibler divergence:

KL(y, ŷ) = `(ŷ, y)−Entropy(y)

where Entropy(y) is the entropy of the ground truth distribution y. In the
case where y is the one-hot encoding of a single label, the entropy is 0,

15

https://mlbenchmarks.org

Working draft available at https://mlbenchmarks.org

so KL(y||ŷ) = `(ŷ, y). As long as the ground truth is fixed during training,
minimizing cross entropy is equivalent to minimizing the KL-divergence
from the true distribution to the predicted one.

A typical model won’t directly spit out probabilities, but rather a vector z ∈
R
C consisting of C real numbers. It’s customary to convert these into a

probability distribution using the softmax operation:

ŷc =
ezc∑C
c=1 e

zc

Composing softmax, cross entropy loss, and one-hot encoding, things sim-
plify to

`(ŷ, y) = −ztrue + log
C∑
c=1

ezc ,

where ztrue is the coordinate of the vector z corresponding to the true class.
This loss function is differentiable, so it goes well with gradient-based opti-
mizers. Taking the derivative of the loss with respect to any of the predicted
probabilities zc, things simplify even further:

∂`(ŷ, y)
∂zc

= ŷc − yc

Remember that yc is the one hot encoding of the true class. This means
that a small improvement in cross entropy loss on a single example nudges
the model toward the correct class. The gradient vanishes when the model
outputs the correct class. This is still true if y represents any distribution,
not just a one-hot encoding. This property is what makes cross entropy
a proper scoring rule: Minimizing the loss function recovers the true class
probabilities.

Proposition 4. The risk minimizer of the cross entropy loss is the condition
probability model p(y|x).

At the population level, cross entropy minimization recovers the condi-
tional probability function p(y|x) of the data-generating distribution. When
minimizing cross entropy on a sample S, we hope that we end up with a
model that’s not too far off. Understanding how good a trained model is, put
simply, is the problem of model evaluation: Given a trained model, figure
out how good it is, especially relative to other models.

16

https://mlbenchmarks.org

Working draft available at https://mlbenchmarks.org

2.5 Notes

Hacking coined the phrase astronomical conception of society in The Taming of
Chance1, the sequel to his classic The Emergence of Probability2. Emergence
explores the origins of probability in the 16th and 17th centuries. Taming
takes on the rise of statistical thinking and population statistics in science
and government in the 19th century. Daston covers the history of probability
in the time period between Emergence and Taming.3 Stigler is the reference
for the history of statistics in the late 19th century.4 I highly recommend
these books to anyone interested in understanding how statistics came to be.

Much of the technical material I covered is standard and can be found in
many textbooks. The chapter is similar in scope and content to Chapter 3
of Fairness and Machine Learning5, and Chapter 2 of Patterns, Predictions,
and Actions,6 which is in turn similar to Chapter 2 in Pattern Classifica-
tion and Scene Analysis7 and Chapter 2 in A Probabilistic Theory of Pattern
Recognition.8

For an advanced technical treatment of learning theory, consider Bach’s
Learning Theory from First Principles9.

17

https://mlbenchmarks.org

Working draft available at https://mlbenchmarks.org

Bibliography

[1] Ian Hacking. The taming of chance. Cambridge University Press, 1990.

[2] Ian Hacking. The emergence of probability: A philosophical study of early ideas
about probability, induction and statistical inference. Cambridge University Press,
2006.

[3] Lorraine Daston. Classical probability in the Enlightenment. Princeton University
Press, 2021.

[4] Stephen M Stigler. The history of statistics: The measurement of uncertainty before
1900. Harvard University Press, 1990.

[5] Solon Barocas, Moritz Hardt, and Arvind Narayanan. Fairness and Machine
Learning: Limitations and Opportunities. MIT Press, 2023.

[6] Moritz Hardt and Benjamin Recht. Patterns, predictions, and actions: Foundations
of machine learning. Princeton University Press, 2022.

[7] Richard O. Duda and Peter E. Hart. Pattern Classification and Scene Analysis.
Wiley New York, 1973.

[8] Luc Devroye, László Györfi, and Gábor Lugosi. A probabilistic theory of pattern
recognition, volume 31. Springer Science & Business Media, 2013.

[9] Francis Bach. Learning theory from first principles. MIT press, 2024.

18

https://mlbenchmarks.org

	Populations and predictions
	Prediction
	Optimal predictors
	Regression
	Calibration

	Risk minimization
	Errors and metrics
	Model training
	Training objective

	Notes

