3
Detecting differences

A single statistical problem illuminates much of the mathemat-
ical tools necessary for benchmarking. The key lesson is that
sample requirements grow quadratically in the inverse of the
difference we try to detect.
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The most basic problem in benchmarking is to decide which of two models
is better. Model comparisons also provide a basis for model ranking. By
repeatedly comparing models, we can compute a complete ranking.

At the population level, the situation is clear once we fix a loss function.
Given two models, we prefer whichever model has lower risk. Likewise,
a good benchmark should give us a sorting of models in increasing order
of risk. Focusing on risk and nothing else means that we treat models as
black boxes; we don’t look at the wires under the hood, the trained weights
of the models. We only compute loss values on input and output pairs.
Two representationally different models that compute the same function are
equivalent in this view. In practice, there could be other important measures,
such as model size. But for now, we restrict our attention to comparing
models by the risk they achieve.

The problem of model comparison gets tricky when we don’t know the full
population. Let’s say we have a collection of test cases S = {(x1,v,,), ..., (X, V)
consisting of n labeled data points at our disposal. Recall that the empirical
risk of a model f is the sample average of the loss function

Rs(f)=> ) OF0x) )
i=1

We previously introduced empirical risk as an objective for model training,
but now we’re going to use it for model evaluation. Given two models f, g it
makes sense to pick whichever model has the lower empirical risk:

If Rs(f) <Rs(g), pick f, else g.

This is a simple and natural strategy. It’s essentially the only thing people do.
In this chapter, we’ll work out when this selection rule correctly identifies
the model of lower risk.

The problem we face is that our sample is just a small part of the pop-
ulation. The models could always differ in a part of the population that
we haven’t seen. Worse, the sample we have might be skewed for whatever
reason in favor of one model over the other.

To make the problem tractable we assume that each labeled data point
in our sample is a random draw from the population. The draws are inde-
pendent and each draw follows the data-generating distribution. Machine
learning researchers call this the i.i.d.-assumption; labeled data are drawn in-
dependently and are identically distributed. When things go wrong, researchers
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often diagnose the problem as a failure of the i.i.d.-assumption. But much
like the word distribution shift, the term misses the more fundamental prob-
lem: The world isn’t a probability distribution to begin with. The major leap
of faith is to assume that the world is a distribution. That was the heavy lift
of the astronomical conception. Once we assume that the population is a
probability distribution, to assume that, in addition, we can sample from it
is the lesser stretch of imagination. If the population is a giant database of
instances—e.g., an internet crawl, or the U.S. Census population—we can
randomly sample from it so as to satisfy the i.i.d.-assumption.

Ultimately, though, the assumption again derives its justification from its
utility. In return for making the i.i.d.-assumption we gain useful insights.
Primarily, we’ll be able to answer the question how large a sample we need
to tell apart models of a certain difference in risk. Equivalently, we learn
what kind of a difference we can tell apart with the sample size we have.
Such sample size calculations are the basis for any benchmark design.

Before we start, let’s break down the problem into its bare essentials. For
now, we focus on classification error. The extension to other loss functions
won'’t be hard. Recall, taking the classification error as a loss function, the
risk of a model f equals

R(f) =P{f(X) = Y} =E1{f(X) = Y}.

The indicator 1{f(X) # Y} is a random variable that follows a Bernoulli
distribution B(p) with bias p, where p = R(f) is the classification error of the
model. Now, suppose a competing model g has risk g = R(f). Without loss of
generality, assume p < g and let € = g — p > 0 denote the difference between
the two. Our empirical risk based comparison correctly identifies f as the
better model provided that

Rs(f)<R(f)+> and Rs(g)>R(g)->

-5
This condition implies that the differences between risk and empirical risk
don’t flip our comparison.

From the start, we know that the expected empirical risk equals risk:

ERs(f) = R(f)

Here, the expectation is over the random sample. The fact holds so long as
our sample follows the data-generating distribution. This needs no indepen-
dence. What’s missing then is a way to argue that the empirical risk is close
to its mean. This is where independence comes in.
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To further simplify, let’s focus on the case where g =1/2 and p = 1/2 - €.
This turns out to be the hardest case so that we really don’t give up anything
here. In this case, the distribution of the indicator 1{g(X) # Y} now is an
unbiased coin toss B(1/2), and the distribution of the indicator 1{f(X) # Y}
is an e-biased coin B(1/2 —¢).

The problem we end up with is that of distinguishing an unbiased coin
from an e-biased coin from n samples. Although seemingly simple, this
problem illustrates most of the statistical tools we’ll need throughout this
book. Coin tossing is a surprisingly universal problem in machine learning.
Many problems can be reduced to or expressed as an instance of coin tossing.

3.1 Coin tossing

Consider the distribution P of a fair coin toss. Recall that this is a Bernoulli
distribution with parameter 1/2. For convenience, we’ll slightly reparame-
terize things. A sample from P takes on the value 1 representing heads with
probability 1/2 and the value —1 representing tails also with probability 1/2.
The choice of the values {—1, 1} is just for mathematical convenience. The
choice {0, 1} works out similarly.

Contrast the distribution P with the distribution Q of a biased coin toss
corresponding to a Bernoulli distribution with parameter (1 + €)/2. We as-
sume € € (0,1] and think of € > 0 as a small bias term that makes the value 1
just a bit more likely. This way of writing the bias term will make the
formulas a bit nicer. That’s all.

Suppose you observe n independent random samples from one of the two
distributions:

+1,-1,+1,+1,-1,-1,+1,+1,+1,+1,+1,-1,1,-1,-1,-1,+1,+1,-1

Can you tell which distribution these samples come from? More quantita-
tively, we can ask how many samples we need to decide which distribution
it is.

Let’s start with a basic observation. The distribution P has mean 0, whereas
the distribution Q has mean €. This observation motivates a simple test.

Denote the samples by X,..., X, and their sum S =) ! | X;. Test if

? . €N
S>t Wlth tZT
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In words, we test if the sum of our samples is closer to 0 or en. If it’s closer
to 0 we declare the coin unbiased, else biased.

When does this work? What we hope is that for large enough 1, coins
drawn from P will rarely sum up to a value larger than our decision threshold.
Likewise, coins drawn from Q should rarely sum up to a value smaller than
our decision threshold. What can we hope for?

A variance calculation is a good first step. The variance of a coin toss
equals 1 in the unbiased case. It is strictly less than 1 in the biased case. The
variance of a sum of independent random variables equals the sum of the
variances. Therefore,

VS=E(S-ES)?>=Y",VX;<n,
with equality in the last step for the fair coin. A standard deviation is

VV S < .

Deviations of multiple standard deviations are unlikely. The reason is that
for any random variable X with mean y and standard deviation ¢ we have:

(X —p)? (X—WT_E@—M2_1

a?o? a?

P{|X — p| > ac} = IP{ 752 152 —

>1}$1E

This basic fact is Chebyshev’s inequality. We used a clever trick in deriving it:
The probability that a nonnegative random variable exceeds 1 is bounded by
its expectation. We’ll use this fact once more below.

Chebyshev’s inequality holds for any random variable with finite mean
and variance. In particular, it suggests that the sum S is unlikely to deviate
from its mean by significantly more than y/n. We therefore expect our test to
work in the parameter regime:

1 1
en>Vn o ex>»>— o n>—

Vi =

The notation “a > b” I use here means that a > cb for a sufficiently large
constant factor ¢ > 0.

From here on, we’ll work out why this is, in fact, the correct answer.
Detecting a bias of order € requires 1/€? samples. This turns out to be
necessary and sufficient up to constant factors. Put differently, from n
samples we can generally detect differences of magnitude 1/+/n. This is a
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Bin(1000,0.5) vs Bin(1000,0.51) Bin(10000,0.5) vs Bin(10000,0.51)
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Figure 3.1: Distribution of unbiased and biased coin tosses with 1000 sam-
ples (left) and 10000 samples right

fundamental statistical fact. By and large, it’s the only statistical fact we’ll
need. It comes in many variants that go by many different names. But the
fundamentals are always the same.

Now, this might seem disappointing. Does detecting a 1% bias in a coin
really require about 10000 samples?

The answer, in general, is yes.

The number of heads in a sequence of n coin tosses with bias p follows a
binomial distribution, denoted Bin(#n, p). It’s helpful to plot the distribution
of coin tosses with biases, say, 0.5 and 0.51, respectively. The result should
convince you that after 1000 samples, the corresponding binomial distribu-
tions are intuitively quite close. After 10000 samples we have a chance to
distinguish them.

There’s one exception to this sobering fact. Suppose we want to distinguish
a coin of bias 1 from a coin of bias 1 — €. One coin never comes up tails. For
the other coin we expect that after n > 1/e samples we see tails at least once.
So, here we only need n ~ 1/€ samples to distinguish the coins. It’s tempting
to think that this is the correct answer in general, but it really only holds in
this special case.
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3.2 Concentration inequalities

Chebyshev’s inequality is an example of a concentration inequality. It gives
bound a bound on the probability of a large deviation from the mean of a
random variable. It holds for any random variable with finite mean and vari-
ance. There’s something a lot stronger we can say for sums of independent
random variables.

Coin tosses are Bernoulli trials. The sum of n independent Bernoulli trials
follows a Binomial distribution. A standard concentration inequality for
sums of independent Bernoulli trials, from the family of Chernoff bounds,
gives us:

* Px..p{S=2ES+a}< exp(—a’/2n)
* Px. o{S<ES-a}< exp(—a*/2n)

Summing up both tail bounds on the right hand side and plugging in
a = en/2, we find that the failure probability of our distinguishing test is
bounded by

P (S>t)+ P {S<t})<2exp(-e’n/8).

X;~P X;~Q

What does this mean? We can see from the bound that for n > 8/€2, we
begin to get a small error probability. For n > 1/€? our test works with high
probability. Whereas Chebyshev gave us a quadratic tail 02/a?, Chernoff
gives us an exponentially small probability exp(-a?/2c?). The tail bound
is the same tail bound we’d have for a normal distribution of standard
deviation 0. As a result, such a tail is called sub-gaussian.

To prove the Chernoff bound, we need Markov’s inequality. We already saw
the proof of Markov’s inequality in our derivation of Chebyshev’s inequality.
It’s worth repeating.

Proposition 1. (Markov’s inequality) Assume X is a nonnegative random
variable. Then, for any a > 0, we have

P{X >a} < %
Proof.
IP{XZa}:IP{%XZ 1} SIEEX] = %IE[X]

Here, the inequality uses nonnegativity of X. The last equality follows from
the linearity of expectation.
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We’ll prove the most basic Chernoff bound. It gets the key idea across
without the more delicate optimizations of other bounds.

Theorem 1. (Chernoff’s bound) Let X,,...,X,, be i.i.d. unbiased coin tosses
in{-1,1}. Let S = )_; X;. Then, for every a > 0,
IP{S > a} < exp(—a®/2n).

Proof. First, exponentiate the random variable to make it nonnegative and
apply Markov’s inequality. Indeed, for any a > 0 and A > 0, we have

P{S > a} = P{e! > ') < E[e!]eH
Second, use the independence of the random variables X,..., X, :
E[e}S] = Ble T Xi] = E[[TL, ] = [T, E[e?]

Third, apply a clever inequality to each term:
A A
IE[e’\X"] & + ¢ < e’\z/2
2 2
To show this inequality, you can compare the Taylor expansion of the left
hand side and right hand side.

Finally, put it all together and optimize over the choice of A:

n a
IP{S > 61} < (e/\z/Z) e—/\a < e/\zn/Z—/\a — e—a2/2n for A=—.
n

]

This gives us the bound we need for unbiased coins. The same bound
extends to biased coin tosses. The proof changes slightly. We first center the
coin tosses by subtracting the mean. We then repeat the proof and use the
magic inequality:

(1+e€)e1™ My (1—e)e H <ot 472

The basic proof template behind Chernoff’s bound gives a whole slew of re-
lated inequalities that hold under various different assumptions. In all cases,
we need the random variables to be “independent enough” and “bounded
enough”.

For many applications in machine learning, a close relative of Chernoff’s
bound called Hoeffding’s inequality comes in handy. It generalizes the bound
we proved as well as the bound we need for biased coins.
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Theorem 2. (Hoeffding’s inequality) Let Xy,..., X, be independent random
variables with X; € [b;,c;]. Let S = X1 + X, +--- + X,, denote their sum. Then, for
every positive scalar a > 0, we have

P{|S-IES|>a} < 2exp(—n2—az) :
i=1(ci = b;)?
Proof. We start by proving
P{S-ES >a}<exp (—2a2/Z?:1(ci —~ bl-)z) .
Following Chernoff’s recipe, apply Markov’s inequality and exponentiation:
P{S-IES >a} = IP{e/\(S‘lES) > e"“} < IE[e/\(S‘lES)]e‘A“
By independence,

[E e MS—ES) — " IE[e/\(Xi—IEXZ-)] .

Now, use the magic inequality
]E I:e/\(Xi—]EXi):I < eAZ(Ci—bi)z/S .
The identity follows from some calculus and we omit the proof. So, we

conclude
P{S—ES > a} < eV Lini(-bi)*/8,-Aa,

Setting A = 4a/Y " | (c; — b;)?, we get
P(S—ES > a} < exp(-2a*/ L] (c; - b;)?)
That’s what we wanted. Using the same proof, we can also show
P{S-IES < -a} <exp (—2612/2?:1(@ — bi)2) .
Combining the two inequalities via the union bound gives us the statement

of the lemma.
O

Hoeffding’s inequality generalizes Chernoff’s bound. We recover the Cher-
noff bound above by setting b; = —1 and ¢; = 1. Note that this gives a constant
of (¢c; — b;)* = 4 in the denominator so that we end up with the same constant
as the original Chernoff bound.

Concentration inequalities give us conditions under which our simple
mean-based test succeeds with overwhelmingly high probability. But they
say nothing about whether there couldn’t be some other kind of test that
requires far fewer samples.
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3.3 Distances between distributions

Comparing the mean of n coin tosses gave us a test to distinguish biased
from unbiased coins provided that n > 1/ €2. However, we don’t know yet
that we can’t do better. Perhaps our analysis of the mean-based test was far
from optimal. Or, perhaps there is an entirely different test that would work
much better. Who says that we have to look at the mean?

Formally, it’s not clear yet that we can’t do better than 1/€? by way of some
more sophisticated test. We’ll now rule out any such possibility. To do so,
we’ll define a distance between distributions that corresponds to the best
that a bounded test function can do in distinguishing the two distributions.
We’ll then show that the distance between n unbiased coins and n biased
coins is small so long as n < 1/€.

Total variation distance

For two discrete distributions P and Q taking on values in a discrete set &/,
the total variation distance is defined as

1
TV(P,Q) =5 ) [P()-Qlx)
xeX
Total variation distance is directly related to distinguishing probabilities:

TV(P,Q) = sup|P(T) - Q(T)| = sup
TCX 0: X—{0,1)

X]PP 0(x)— xiEQ 0(x)

The last expression correspond to the best that a bounded test function 6
can do in distinguishing P from Q.

If we can show that total variation distance is small, no bounded test
function can distinguish between the two distributions with high probability.
Think of the test function 6 as trying to output 1 if we believe the distribution
is P and outputting 0 if the distribution is Q. Our mean-based test is one
such test function.

But note that we apply our test function to a sample of n coins. That is the
same as a sample from the product distribution P" that gives n independent
draws from P. So, we're generally interested in the total variation distance
between the P" and Q". Our goal is to show

N |~

1
n<— = TV(P,Q")<
€
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This means that no test can distinguish P and Q from n samples with high
probability. The choice of 1/2 is arbitrary.

Although we’re interested in multiple coin tosses, it makes sense to start
by analyzing a single coin toss. Returning to our coins P, unbiased, and Q
with bias (1 + €)/2, a calculation shows TV (P, Q) = €. But this is a bit of an
issue. The total variation distance between a coin with bias 1 and a coin
with bias 1 — € is also e. From the perspective of total variation, these two
pairs of distributions have the same distance. But we argued earlier that
we expect these two distinguishing problems to be fundamentally different.
One requires 1/€2 samples, the other 1/e.

Moreover, trying to calculate the total variation distance between multiple
coin tosses from first principles gets tricky. Thankfully, there is another
distance measure that comes to the rescue.

Hellinger distance

A different distance measure gets us unstuck. It’s called Hellinger distance.
Define its square as:

H(P,Q) = 5 ) (VPu- Vam) =1-Y VPR,

X

Let’s see what happens for an unbiased coin P and a coin Q with bias (1 +

€)/2.

Claim 1. H*(P,Q) < e?/4

Proof. By Taylor approximation, for € € [-1/2,1/2],
Vite= 1+%e—§62+6

up to error 6 with |9] < 55€2.

Hence,
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In contrast, for the bias 1 coin and bias 1 — € coin, we get Hellinger squared
distance 1 — V1 —e = €/2. We're off to a good start! Hellinger distance is
sensitive to the two different kinds of biases. We don’t yet know how to
analyze multiple coin tosses. But here we got lucky again.

Hellinger squared distance behaves nicely on product distributions; it
satisfies a direct sum theorem. When we have a sample of n independent
coin tosses, its distribution is a product distribution over n-tuples. Denoting
by P, P, the product distribution with components P; and P, we have:

H?(P,P,,Q;Q,) —1—2\/131 (x)Q2(»)

=1- (Z\/Pl(x)Ql(x)] . [vaz(}’)Qz(y)]
X y
=1-(1-H(P, Q1)) (1-H*(P, Qy))
In particular,
H?(P Py, Q1Q;) < H?(P, Q1) + H?(Py, Qy).

For n independent identically distributed draws, denoted P" and Q”",
respectively,
H*(P", Q") < n-H*(P,Q)

By the direct sum theorem for Hellinger distance, in our coin tossing
example, we have
H?(P",Q") < e*n/4.

So, for n < 1/2€? the Hellinger distance between 7 coin tosses from either
distribution is at most 1/8. We now relate this back to distinguishing proba-
bilities.

All that’s left to do is to go back to total variation distance. This is possible,

since the total variation distance is sandwiched by the Hellinger squared
distance and the Hellinger distance up to a constant:

H%(P,Q) < TV(P,Q) < V2H(P, Q)

In particular, in our coin tossing example,

TV(P", Q") < y/2H2(P", Q") < V2/8 = 1/2.
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This means that no test can distinguish the two coins from fewer than 1/2¢?
many samples without being wrong a good fraction of the time.

More precisely, if a test 6 accepts a sample from P" with probability p it
must also accept a sample from Q" with probability p —1/2. For example, if
the former is 0.95, the latter is at least 0.45. If our test accepts the sample,
we’re left with significant uncertainty.

3.4 From coin tosses to benchmarking

Let’s map what we learned back to benchmarking. Fix any bounded loss
function €: ) x Y — [0, 1]. Note that any loss function mapping into [-B, B]
can be rescaled to the interval [0,1]. Fix a model f: X — ).

Assume the sample S = {(x1,v1),...,(x,,,v,)} is @ random draw from the
population. Since each data point is distributed according to the data-
generating distribution, we have

ERs(f) = R(f).

In addition, the random variables Z,...,Z, with Z; = {(x;,y;) are indepen-
dent of each other. Therefore,

1 v 1
VRs(f) = ﬁ;vzi <-
1=

Here we used that a bounded loss in [0, 1] has variance at most 1. Sums
of independent random variables concentrate around their mean up to a
standard deviation. Therefore, we expect

Rs(f) ~ R(f) £ O(1/vn).

For bounded losses in [0, 1], Hoeffding’s bound makes this precise. For a
fixed predictor f, we have

Ig{uzsm ~R(f)|2 %} < 2exp(-27).

n

Setting t = 2, we get 2exp(—2t2) ~ 0.00067. So, risk and empirical risk are
within 2/4/n of each other with high probability.

There are always two equivalent ways to think about this:
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1. Estimation errors shrink as the inverse square root of sample size:
Given n samples, we can detect differences of about 1/+/n.

2. Sample size requirements grow quadratically in the inverse of the
difference we try to detect: Given that the difference is € > 0, we need
about 1/€? samples to be able to detect it.

Coin tossing shows that there is no way around this quadratic dependence.
We need at least 1/2¢% samples to distinguish the accuracy of a classifier
that does random guessing from one that’s € better than random guessing.
We can quibble about the precise constants in this trade-off. Although we
got it down to a relatively small constant factor between our upper and
lower bound already. But there’s nothing we can do about the fundamental
quadratic relationship. This is a basic lesson for benchmark design. If we
want to be able to detect differences of magnitude € on our test set, we better
include 1/€? data points.

There is only that one exception. We can distinguish a perfect predictor f
with R(f) = 0 from an imperfect predictor g with R(g) > € using only O(1/¢)
samples. Simply draw new data points until we observe a nonzero loss. If
after n > 1/e samples we haven’t seen a nonzero loss, it’s likely that our
predictor is perfect.

Multiple comparisons

What about multiple comparison between classifiers? To reason about a
fixed family F = {fy,..., fx} of k predictors we can couple Hoeffding’s bound
with the union bound:

t
P{Af € F: [R[f]-RIf]| > —= ¢ < 2kexp(-2t?).
S{ feF: IRs[f1-RIf]| 2 «/ﬁ}_ exp(-2t%)
In other words, we multiply our tail bound by the number of functions we
evaluate. This is called a Bonferroni correction in the context of multiple
hypothesis testing. It works the same way here.

What this means is that the maximum error € that we encounter among k

estimates grows as
€= O(\/logkn) .

This shows that if we want to detect differences of magnitude € among k
classifiers we need:

log k o e log k

n>
€? n
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To summarize, sample requirements grow quadratically in the inverse differ-
ence, but only logarithmically in the number of functions.

3.5 Notes

Wasserman’s All of Statistics' makes for excellent background reading on
this topic.

Concentration inequalities. Concentration inequalities are an extremely
well studied subject in probability theory. Boucheron, Lugosi, and Bousquet
give a primer on concentration inequalities.” The text by Boucheron, Lugosi,
and Massart goes into full detail.® Vershynin’s High-Dimensional Probability
gives advanced treatment of concentration inequalities. *

Chernoff’s bound from 1952 and Hoeftding’s inequality followed in 1963.
Many powerful tools beyond Hoeffding’s inequality are available. In par-
ticular, other tools come in handy in applications where the loss function
is not always bounded. We already saw one example in Chapter 2. Cross
entropy can be unbounded if the predictor puts zero weight on the correct
class. There are also numerous concentration inequalities in cases where the
samples are not fully independent. Often enough, some concentration of
measure still works out.

I've often found that when all else fails, McDiarmid’s inequality might help.
It’s an instance of a bounded difference method. All you need is that the
quantity you're interested in doesn’t change much if you toggle any of the
random variables. The function computing the quantity may be complicated;
it doesn’t have to be the mean or anything. The random variables have to
be independent, but they don’t have to be the sample points. They could be
some underlying random seed used to compute the function.

Theorem 3. (McDiarmid’s inequality) Let Xy,...,X,, be independent random
variables taking values in a set B and assume that the function f: B" — R
satisfies the bounded difference condition:

sup sup If (X1, X0) = (X, X1, %, X150 X)) S €5
X1,Xn€B  i€[n],xeB

Then, for all a > 0,

P{f (X1, X)) —~E f(Xy,..., X))l < 2exp(-2a%/ L1y 7).
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Statistical lower bounds. What we proved for coin tosses is called a mini-
max lower bound on statistical estimation. The method of lower bounding
sample requirements of statistical estimation using total variation distance
and Hellinger distance is due to LeCam.” For the mathematically inclined,
Tsybakov’s text, translated from French, is a standard reference on this

topic.°
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