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Holdout method

The holdout method separates training and testing data, per-
mitting anything goes on the training data, while enforcing the
iron rule on the testing data. Not all uses of the holdout method
are alike.

4 Holdout method 1
4.1 Testing on the trainingset . . ... ... ... ......... 2
4.2 Generalization . . . . . . ... . .. e 3
4.3 Guarantees of the holdout method . . . . .. ... ... .... 4

Model selection . . . . . . .. ... ... ... o 6
Theironvault . ... ... ... ... . ... ... . ..... 7
9

4.4 What’s the holdout method for? . .. ... ... ... .....

Signals for model development . . . ... ... .. ...... 9
Modelranking . . . ... ... ... L oo oL 10
Measuring capabilities . . ... ... ... ... L. 11
4.5 Variants of the holdout method . . . .. ... ... ... ... 12
More thantwosplits . . . . . . . .. .. ... . 12
k-fold cross validation . . . . ... ... ... ... ... 13
4.6 Error bars and confidence intervals . . . ... ... ... ... 15
Bootstrap sampling . . . .. ... ... 18
Internal versus external validity of reported numbers . . . . . 19
4.7 Notes . . . . . o e 20

Source: The Emerging Science of Machine Learning Benchmarks. M. Hardt,
2025. URL: https://mlbenchmarks.org. Compiled on 2025-04-30.

1


https://mlbenchmarks.org
https://mlbenchmarks.org

The previous chapter prepared us for the main protagonist of the book:
the holdout method. The holdout method is an empirical way to estimate the
risk of a predictor. The basic idea is this:

1. Split available data randomly into disjoint training and test sets.
2. Use the training set to train a model f.
3. Use the test set to compute the empirical risk Rg(f).

Let’s first understand the logic behind separating training from testing
and why we need the split in the first place.

4.1 Testing on the training set

A basic insight about machine learning is that we can’t use the same sample
for both training and testing. In other words, we can’t test on the training set.
Once we have trained a model f on a sample S, the sample may no longer
provide a good estimate of the risk of f on the data-generating distribution.
This will sound like a truism for those familiar with machine learning. But
the reasons why this is so are not obvious.

Let’s start with an extreme example. Consider a learning algorithm A(S)
that given a sample S outputs the predictor f so that f(x) =y if the pair (x, )
occurs in the sample S and f(x) = 0 otherwise. This predictor is essentially
just a lookup table that retrieves the label of seen instances. On previously
unseen instances, it does nothing useful.

The empirical risk with respect to the zero-one loss of the lookup table
is 0 on the sample S, i.e., Rg(f) = 0. The lookup table never makes a mistake
on the sample, by construction. Outside the sample, however, the lookup
table is never better than the constant 0 predictor. Assuming the sample has
measure 0 within the population, the risk of the predictor is therefore no
better than that of a constant predictor. If labels are balanced, meaning they
are half 0 and half 1 on the population, then this predictor achieves R(f) =
1/2.

This simple example shows that Rg(f) can be a terrible estimate of R(f)
when the predictor f is trained on the sample S.

You might object that this algorithm is unreasonable, since it involves no
“learning” whatsoever. I would agree! But consider a slight modification. On
each input x, we compute the nearest point x” in, say, Euclidean distance, so
that (x’,y) € S and output f(x) = y. This is the well-known nearest neighbor
classifier, a staple in learning theory. It certainly qualifies as a reasonable
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algorithm. And yet, it has Rg(f) = 0 just like our extreme example before.
The risk R(f) could be anything depending on the population. There are
cases where nearest neighbor classifiers are provably optimal and there
are cases where they perform poorly. We just can’t tell by looking at the
empirical risk Rg(f).

To summarize, when we optimize the model on data points in S, its per-
formance on S is likely much better than its performance on the underlying
distribution that S was drawn from. Formally, the model depends on the
sample S and therefore Rg(f) is no longer an unbiased estimate of R(f). Re-
call, in contrast, if we draw a fresh sample T, independently of f, then Ry (f)
does provide an unbiased estimate of R(f).

4.2 Generalization

In its narrow definition, generalization refers to the difference between
empirical risk and risk. Recall that empirical risk has two purposes in
machine learning: training and testing. Generalization is important in both
cases. We'll focus on generalization in the context of model testing. But it’s
good to be clear about the differences between the two.

The first use of empirical risk is as an objective function for model training.
For training, machine learning practitioners use various optimization meth-
ods to find a model that minimizes empirical risk. In the case of training,
the loss function has to be suitable for the optimization method we apply. In
Chapter 2, we discussed cross entropy as the canonical example of a training
loss. When we use a sample S for training, we call the sample the training
set. We also call the empirical risk Rg(f) the training error or training loss.
In the golden era of learning theory, researchers aimed to develop learning
algorithms that provably output predictors of small generalization gap with
respect to the training sample. The theoretical program met with serious
obstacles in deep learning. It’s been difficult to prove any reliable a priori
bounds on the generalization performance of the kind of models people
build in practice. As a result, practitioners primarily rely on the holdout
method to empirically estimate the risk of a trained model.

This brings us to the second use of empirical risk in testing or evaluation.
Here we assume that we have already obtained a predictor and we want
to estimate its loss on the population by using empirical risk as a stand
in for risk. For the purpose of model testing the loss function typically
corresponds to whatever evaluation metric we choose for our application.
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In many applications, the loss function for evaluation is the zero-one loss
that counts classification errors. Zero-one loss is the same as one minus
classification accuracy. The loss function we use for testing is almost always
different from the one for training. In general, we might not even know at
evaluation time what happened during training. For instance, we might’ve
downloaded the model we evaluate from the internet. We call the sample S a
test set when we use the sample for testing. In this case, we call the empirical
risk Rg(f) the test error or test loss.

Definition 1. The generalization gap is the difference between risk and empirical
risk:

As(f)=R(f)—Rs(f)

The generalization gap tells us how much the empirical risk underesti-
mates the loss of the model f on the population. It’s a signed quantity that
could be positive or negative. Typically we bound its absolute value. We
hope that the generalization gap is small in absolute value for the models
that we evaluate.

Overfitting is a common term in machine learning that, roughly speaking,
describes situations where risk and empirical risk are not as close as we
would like. Overfitting is a concern for both training and testing. The
empirical phenomena related to overfitting during training and testing,
however, are not the same. Model size, for example, plays a major role
for training. For testing, model size is often irrelevant. We typically treat
the model as a black box and evaluate it on the sample we have. In its
narrow definition, overfitting refers to situations where empirical risk gives
a misleading estimate of risk, i.e., a large generalization gap.

4.3  Guarantees of the holdout method

The fact that we cannot test on the training data has motivated a common
sense heuristic: Split the available data into two disjoint sets, a training set
and a testing set. In practice, we let the community apply the anything goes
principle to the training set, not limiting practitioners in how they utilize
the available training data. Whatever the result of training is, we evaluate
its performance on the test set.

The idea to split training data randomly into training and test sets is called
holdout method. The test set is therefore also called holdout set. The intuition
for the holdout method is this. Suppose we fit one model f on the training
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set and evaluate it on the test set S. Assume the sample S was drawn i.i.d.
from the population (X,Y). Then, by linearity of expectation and the fact
that each sample is distributed identically,

ERs(f)= 1) Ee(f(x)9) = EE(f(X),Y) = R(f).
i=1

Moreover, computing the variance of Rg(f) and using independence between
the samples, we have.

VRs(f) =5 ) VEF@)9) = VEF(X),Y)
i=1

For a bounded loss function £: ) x) — [0,1], we must have V{(f(X),Y) <
1/4. This is because a fair coin tosses maximizes variance among all distribu-
tions supported on [0, 1] and its variance is 1/4. To summarize,

1
ERs(f)=R(f) ~and  VRs(f)< .
This means that we should expect the empirical risk to approximate the true

risk up to a 1/+/n error:
1

(f)i%

Put differently, if we draw error bars around the empirical risk of width 1/sqrtn
we can be reasonably sure that these error bars contain the risk. We’ll make
the idea of error bars precise further down. But the point is that the number
we have could always be this much higher or lower depending on random
chance. If we have 10,000 test cases, we can report loss estimates up to a
resolution of two digits after the decimal point.

Rs(f)~R

An equivalent way to think about it is also quite useful. If we want to create
a test set so that empirical risk and risk are e-close, we need at least n > 1/¢?
samples. This is what’s called a sample size calculation. The requirement
here is non-trivial. For example, if our goal is to estimate an accuracy number
of to 1% error, we need about 10,000 samples. The argument in Chapter
3 revealed that we can’t avoid this cost. As a consequence, it’s common
for machine learning test sets in practice to have tens of thousands of data
points.

We can make the sample requirements more precise using Hoeffding’s
bound from the previous chapter.
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Proposition 1. Fix a function f: X — ) and fix a bounded loss function €: ) x

Y —[0,1]. Let S ={(x1,91),...,(x,, v,)} denote a random sample of size n where

each data point (x;,v;) is drawn independently from the same underlying distri-
bution. Then, for every 6 > 0,

log(2

IP{IAs(f)l < —ng(n/é)} >1-5.

Proof. Let a = /log(2/6)n/2. Using Hoeffding’s inequality from Chapter 2
with ¢; =1,b; =0, we have

log(2/9)

IP{IAs(f)I > o } = P{|nR(f) - nRs(f)| > a} < 2¢7 247" = 5.

]

Guarantees like this are sometimes called generalization bounds, since we
bound the generalization gap. Plugging in 0 = 0.05, we get that |[Ag(f)| <
1.36/4/n with 95% probability. We can make the failure probability very
small at a slight increase in sample size.

Model selection

Let’s extend our sample size calculation to a slightly more challenging prob-
lem called model selection. Given a candidate set of k classifiers fi,..., fx,
we want to choose the approximately best among them. To get a bound on
the generalization gap of the chosen model, we need to bound the largest
possible generalization that could occur among the k functions.

Proposition 2. Fix k classifiers fi,... fy: X — Y and fix a bounded loss func-
tion £: Y xY — [0,1]. Let S = {(x1,v1),..., (X, ¥,)} denote a random sample
of size n where each data point (x;,y;) is drawn independently from the same
underlying distribution. Then, for every 6 >0,

>1-90.

log(2k/9)
H’{lrrglglAs(ft)l N5, }

Proof. Fix an arbitrary function f: X — ). By Hoeffding’s bound, for ev-
ery € >0,
P{IR(f) = Rs(f)| > €} < 2exp(-2€n).
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Set

_ [log(2k/6)
€= 2n

P{IR(f)=Rs(f)l = €} <

Apply this bound to each of the functions fi,..., ft. Then, take the union
bound over all k functions to conclude

and we get

= o

IP{max|R(ft)—R5(ft)|2€}Sk-%:6.

1<t<k

]

What'’s remarkable about this bound is that the dependence on the num-
ber k of models is only y/logk. This means we can, in principle, compare
exponentially (in ) many models before the bound becomes trivial. So long
as k = 2°" we still have a maximum error of o(1).

The iron vault

We just saw powerful theoretical guarantees of the holdout method. Due to

concentration of measure, we can evaluate k models with error about +/log(k)/n.
This is an impressive guarantee, but there is one major caveat.

Unfortunately, these guarantees are for one-time use. They only hold if the
holdout set is fresh, that is, i.i.d. with respect to the population of interest.
The moment the model depends on the holdout sample, these guarantees
go out of the window. In theory, this makes perfect sense. Remember the
example of the lookup table that stores the sample. This is a model that
depends on the sample. We can’t hope to have any guarantees in this case.
That’s why statistical authority cautions against using a holdout set twice:

Ideally, the test set should be kept in a “vault,” and be brought
out only at the end of the data analysis. Suppose instead that
we use the test-set repeatedly, choosing the model with smallest
test-set error. Then the test set error of the final chosen model
will underestimate the true test error, sometimes substantially.l

Think about how restraining it is to keep the holdout data in a vault.
Suppose you train a model and after evaluating it on the holdout data, you
realize you made a silly mistake. If you stick to the promise of keeping the
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data in a vault, you can’t update your model and evaluate it again on the
same holdout. You’d now have to collect an entirely new holdout data set.

Echoing the earlier quote, learning theorist Francis Bach acknowledges the
predicament:

In theory, the test set can be used only once. In practice, this is
unfortunately only sometimes the case. If the test data are seen
multiple times, the estimation of the performance on unseen data
is overestimated.”

The iron vault assumption is fundamentally incompatible with the idea
of a machine learning benchmark. The whole point of a benchmark is for
different scientists to compare their results on the same data. This necessarily
involves using the test set repeatedly. The moment a scientist considers a
prior result on a benchmark dataset, the new model now has some formal
dependency on the test data that invalidates the classical theory.

What if researchers want to incrementally try out tweaks to their models
so as to improve test set performance? Pattern recognition pioneers Duda
and Hart call this problem training on the testing data in a footnote in their
1973 textbook:

In the early work on pattern recognition, when experiments were
often done with very small numbers of samples, the same data
were often used for designing and testing the classifier. This
mistake is frequently referred to as “testing on the training data.”
A related but less obvious problem arises when a classifier un-
dergoes a long series of refinements guided by the results of
repeated testing on the same data. This form of “training on the
testing data” often escapes attention until new test samples are
obtained.’

The fear runs like a thread through the history of pattern recognition and
machine learning. In a seminal paper from 2011, Torralba and Efros caution:

[...] one major issue for many popular dataset competitions
is “creeping overfitting”, as algorithms over time become too
adapted to the dataset, essentially memorizing all its idiosyn-
crasies, and losing ability to generalize.*

Scientists individually and collectively do what Duda and Hart call training
on the testing data. This problem will be the focus of subsequent chapters.
We’ll confront the problem both theoretically and empirically. The bounds
from this chapter will actually be quite useful. They’ll serve as a yardstick
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for what we can hope for under ideal conditions. They don’t give you a
bound on how bad things could be. Rather they tell you what the optimistic
scenario is. That’s also quite useful to have.

4.4 What’s the holdout method for?

The holdout method has several different purposes in machine learning
practice. I'll highlight three for now:

1. Signals for model development
2. Model ranking and model selection
3. Measurement of capabilities

These different uses pose different demands on what the holdout method
needs to deliver, sorted from less taxing to more taxing.

Signals for model development

The first use of the holdout method is during model development. Any
model builder typically has their favorite test set that they trust. Model
building is a highly iterative and incremental process with lots of trial and
error. The holdout method is what supports this incremental approach.

Practitioners incrementally tweak the model while looking for small im-
provements on the holdout set. Once performance has saturated on the
holdout set, model builders scale up the candidate model with greater effort
to a much larger dataset of interest.

For example, CIFAR-10 has long been the model development cousin of
ImageNet. Evaluation on CIFAR-10 is quick and cheap, allowing for rapid
model development cycles.

For this use of the holdout method, we don’t care about the exact number
on the holdout set at all. We care about model comparisons to some degree,
but they don’t have to be perfect either. Primarily, we want that often enough
the holdout set points us in the right direction. Some positive correlation
between holdout performance and performance on the actual target is all we
want.
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Model ranking

A core part of any machine learning benchmark is the leaderboard, a ranking
of all models by empirical risk on the holdout set. In particular, a ranking
gives us a complete set of model comparisons. For any two models, it sug-
gests which of the two is better. A good benchmark should do a reasonable
job in sorting out model comparisons.

If you want to use machine learning for a specific application, be it in-
dustrial, academic, or recreational, you pick the benchmark closest to your
application. You choose the model that performs best in the benchmark as a
starting point for your own application. Then you spend some time building
on top of it. A useful benchmark should satisfy a kind of “no remorse”
guarantee: If your application fails, you know it would’ve failed if you had
started from any lower ranked model.

Model ranking doesn’t need the empirical risk numbers to mean anything.
We just need the model comparisons to be valid. An “easy” benchmark and
a “hard” benchmark might deliver the same rankings. In fact, suppose you
start from any classification benchmark with accuracy as a metric. Now,
you replace a fraction of labels in the holdout set with random labels. This
will change the absolute accuracy numbers in the benchmark significantly,
moving them all lower. But the transformation of accuracy is a monotone.
In particular, the ranking is preserved, up to statistical fluctuation affecting
very close models.

There’s an assumption in the community that better benchmarks capture
more realistic data. But for the purpose of model ranking toy data or noisy
data can be sufficient. Model ranking is the core function of academic
benchmarks. A good ranking should guarantee that the top model on the
shelf is the best starting point for additional development and downstream
applications.

Model ranking is also the key component of machine learning competitions.
Machine learning competitions are closely related to benchmarks, although
they differ in some significant ways. Typically, the sponsor of a machine
learning competition provides a monetary reward for the highest scoring
submission. The prediction task reflects a problem that’s of interest to the
sponsor. Teams can upload models to the competition host and receive a
score from the holdout set. The host of the competition keeps the holdout
set private. Kaggle was a startup, founded in 2010, that organized hundreds
of machine learning competitions, before Google acquired Kaggle in 2017.

10
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Kaggle used a three way split: A training data set, a holdout set to com-
pute the public leaderboard, and another test set to compute the private
leaderboard that determines the winner in the end. Kaggle would actually
release the feature vectors for points in the holdout set, and withhold only
the labels corresponding to the feature vectors. This has the advantage that
participants can compute the predictions of their models themselves locally
and submit only the predictions.

Although the private leaderboard determined the winner, the public leader-
board was often more important. After all, for the duration of the compe-
tition, the public leaderboard was the focus of everyone’s attention in the
competition. Once the competition ended, attention quickly faded. The main
value proposition of a competition was typically not the winning submis-
sion, but rather the community of data scientists that emerged around the
problem. Winning submissions in data science competitions frequently just
combined standard techniques, feature engineering, and model ensembling
in clever, but somewhat hacky ways. The production value of the model was
therefore limited. What the sponsor of a competition gained was visibility
and an edge in recruiting available data scientists.

Machine learning competitions gamify leaderboard climbing. They build
momentum out of competition over the public leaderboard. Since the leader-
board is subject to competitive pressure, it’s important that it works reliably.
The absolute performance numbers in competitions don’t matter.

Measuring capabilities

The most ambitious use of the holdout method is in measuring specific
capabilities, such as reasoning abilities, professional legal training, software
engineering, college-level mathematical problem solving skills, to name a
few.

Measuring capabilities requires an additional ask from the holdout method—
and it’s a significant one. Whatever statistical quantity the benchmark re-
ports must be a good measurement of the skill that we’re interested in. Used
this way, the holdout method is analogous to an IQ test. We hope that the
number we get is a valid measurement of an underlying theoretical construct
like intelligence.

Measurement theory is an old field with numerous consequential applica-
tions, such as education testing. Measurement theory distinguishes between
the so-called construct we’re trying to measure and the statistical proce-
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dure we use to create a numerical representation of it. For example, a
well-designed educational test gives a valid representation of a student’s
ability to navigate specific intellectual tasks. There’s a rich scholarly tradi-
tion of arguing about the validity of measurement. The criteria that make a
measurement valid are broad and demanding.

Whether or not the holdout method measures any particular construct
validly is not so much about the mechanics of the holdout method. It’s a lot
more about the specific data and loss function that we choose. You might
ask why don’t we just use whatever tests we already use for humans and
apply these to machine learning models. Unfortunately, this does not neces-
sarily ensure validity. The reason is that measurement about human skills
hinges on theories of human psychology and development. The assumptions
underlying the measurement therefore may not extend to statistical models.

I sorted the different uses of the holdout method in increasing order of
how demanding the use is. Providing signals in the model training loop
is typically the least demanding ask. Ranking is often possible without
requiring that the data is particularly realistic. Measurement of capabilities
is the most taxing use of the holdout method. It requires the whole slew of
validity criteria that apply to measurement.

4.5 Variants of the holdout method

In the early days of machine learning, sample sizes were small. It seemed
wasteful to allocate a sizable fraction of data to testing without ever training
on these data points. For this reason, there are a number of cross validation
heuristics that make use of the entire sample for both training and testing
purposes.

More than two splits

You will often see more than two splits in practice. A common one is a three
way split into training, validation, and testing sets. The formal guarantees for
the validation and testing sets are the same though. If you haven’t touched
the data, you get an unbiased estimate that enjoys the strong guarantees
above.

The three way split reflects a certain practice that used to be more common.
First, we come up with a bunch of models on the training set. Second, we
select the best model according to empirical risk on the validation set. Last,

12
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we obtain a final risk estimate for the selected model on the test set. In
other words, we use the validation set for model selection and the test set
for evaluation of the final model.

Remember that above we derived guarantees for model selection bounding
the largest deviation between risk and empirical risk in a family of models.
These guarantees apply to the model selection step on the validation set.
However, once we select the best model on the validation set, the empirical
risk of the best model on the validation set is no longer an unbiased estimate
of the risk. The reason is that the model selection step favors outliers. To see,
this imagine that all models are just doing random guessing and all have the
same risk. Then the model you select is simply the model with the greatest
deviation between risk and empirical risk. The additional test set will detect
the problem.

Beyond that, there is not much we get from the three way split. Funda-
mentally, we still need the iron vault assumption for the guarantees to hold.
For example, after finding out that the final test performance of the chosen
model is lower than its empirical risk on the validation set, we can’t go back
and start all over, in theory.

k-fold cross validation

In k-fold cross validation, we partition the sample randomly into k equally
sized parts S = (Sy,...,Sg). For each value t € {1,..., k} we train a model f; on
all but the t-th part, also called fold. We then use the t-th fold as a test set to
compute Rg, (f;). The k-fold cross validation estimate is given by averaging
out these k estimates:

k
Ri= ) Rs(f)
t=1

Unlike the holdout method, k-fold cross validation uses each and every
sample once for testing.

There’s a subtlety with k-fold cross validation. Since we train k models, it’s
not clear what the single model is whose loss the quantity Ry is an estimate
of. It makes sense to consider the randomized classifier f that given an
input x outputs f;(x) for a randomly chosen t € {1,..., k}. It follows that
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5-fold cross validation
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Figure 4.1: Illustration of 5-fold cross validation.

What'’s less easy to see is why Ry should be a good estimate of the risk R(f).
To start, we have that

ERs,(ft) = R(fy).

This is because f; was not trained on S;. Formally, S; remains i.i.d. condi-
tional on f;. But what else can we say?

Set aside correctness for a moment and imagine all the estimates Rg, (f1),..., Rs,(f;)
were independent. To be sure, they are not. After all, the sample S; appears
in the training data for all models f,» with t" = t. But if they were independent,
we’d get the variance bound

k
1 1
VR =75 ) VRs(f)~ L VR, (f).
t=1

The last step is assuming that all variance terms are roughly the same. This
looks great, since it’s about a factor k smaller than the variance of the holdout
method applied to a 1/k fraction of the data, i.e., VRg, (f;).

This sort of heuristic calculation gives hope that k-fold cross validation
might lead to a factor k reduction in variance compared with the basic
holdout method. Unfortunately, there are counterexamples showing that, in
general, k-fold cross validation is no better than a single fold. At least, it’s
to show that it’s never worse than that. Indeed, by Jensen’s inequality, the
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variance of an average is never larger than the average variance. Therefore,

k
1
VR <7 ;wsxft) ~VRs, ().

Notwithstanding this more pessimistic bound, k-fold cross validation empir-
ically does seem to reduce variance as k grows. The empirical phenomenon
has motivated a fair bit of research showing reasonable assumptions under
which the variance of the estimator indeed shrinks as k grows.

If we take k-fold cross validation to the extreme and set k = n, we get
leave-one-out cross validation. The name refers to the fact that each fold
contains only a single data point. We train on n—1 points and test on 1.
Then we average out the n estimates. The same estimator is called jackknife
in statistics circles.

If our earlier heuristic calculation is a good guide, then k = n should achieve
the greatest variance reduction. It also has the greatest computational cost.
We need to train n different models.

There is a notable case where we can get all n estimates at once. For linear
models—and kernel methods, by extension—some clever matrix algebra
gives us all n estimates essentially for the price of one. In general, however,
that’s too much to ask for.

To summarize, k-fold cross validation makes most sense when data are
few. When we have sufficient data for training and testing, the plain holdout
method is easiest and sufficient.

4.6  Error bars and confidence intervals

When you look at any sample quantity like the empirical risk Rg(f) a predic-
tor, you shouldn’t take the quantity literally down to its last digit of precision.
The reason is that the number would likely come out a bit different if we
took another random sample of the same size. Remember, we always expect
fluctuations of around 1/+/n where 1 = |S| is the sample size.

Ultimately, we’re interested in the true risk R(f), but the exact value is
unknown to us. Since different samples give different estimates, how should
we indicate our uncertainty about the true value? It makes sense to report
not a single value but an interval of possible values. The interval depends on
the sample. It should contain the unknown risk R(f) with high probability

15


https://mlbenchmarks.org

over the random sample. This is what statisticians call a confidence interval.
More informally, error bars refer to the end points of the interval, since they
are typically plotted as bars above and below the estimate.

Let’s make this more precise. Consider the case of estimating the classifi-
cation error (equivalently, accuracy) of a model. The sample provides n loss
values, each of them in {0, 1}. Recall from Chapter 3 that the average of these
loss values is a binomial variable scaled by 1/n so that its mean p € [0,1]
is the zero-one loss. Moreover, its variance is p(1 — p)/n. The empirical
risk p = Rg(f) is an unbiased estimate of p.

We want to come up with an interval I,,(p) € [0,1] based on our sample
average p so that IP{p € I,(p)} = 0.95. That is, 95% of the time when we
compute the sample average p from a random sample of size n, the interval
contains the true mean p.

A bit of math shows that this is approximately achieved by the interval

5= |5 [pA-p) . [p(1-p)
In(P)—[P—l-% T,p+1.96 T]

The reason is that for typical values
np>50 and n(l-p)=>50

the scaled Binomial is very similar to a Gaussian variable N (y, o) with y=p
and o2 = p(1 — p)/n. The expression above follows from what the interval
would be under this normal approximation. For a normal distribution, 95%
of its mass is within 1.96 standard deviations from its mean.

The same idea also works for general bounded loss functions in [0, 1]. Here,
the interval we pick is given by

Rs(f)xz- with z=1.96,

Bk

and s is the sample standard deviation

54 ! Z(f(f(xi)’yi)—Rs(f))z-
io1

n-—1

The n—1 in the denominator rather than # is for technical reasons that won’t
matter in machine learning applications. The scalar z is a knob that we can
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95% confidence intervals for 100 random samples of size n = 500
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Figure 4.2: Illustration of 95% confidence intervals computed from 100
random samples. We expect that five intervals do not contain the true mean.

dial to get a certain level of confidence. Since we’re working with a normal
approximation, we get a 95% confidence interval if we set z = 1.96.

There are numerous ways to compute confidence intervals. Even for
the simple case of Binomial confidence intervals you’ll hear Wald (normal
approximation), Clopper-Pearson (strict, conservative guarantees), Wilson
Score (often recommended as default), Agresti-Coull (adjusted Wald), Jeffreys
Interval (Bayesian). There is no need to memorize these. They all agree for
reasonably large values of n when the mean p is not too close to 0 or 1. But
even if n =100 and p = 0.9, all of these intervals have a width that’s largely
determined by V0.9 x 0.1/100 ~ 0.03 and the differences are minor.

Small sample sizes like this had all but disappeared from machine learning.
But they’ve recently been making a bit of a return. Starting with Chapter
10, we’ll cover large language models. Recent models can perform so much
computation at test time that evaluation on a single data point can take
hours. As a result, we can only evaluate few data points in a reasonable
amount of time. Another reason for the return of small test sets is that
challenging test cases may require significant expertise to annotate.

Validity of confidence intervals. Confidence intervals demand a bit more
from the i.i.d.-assumption than the holdout method. For model evalua-
tion, the holdout method only needs that empirical risk is close enough
to risk. This could happen for any number of reasons. Even if the strict
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n=100, p=0.9
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Figure 4.3: Comparison of different Binomial confidence intervals. They are
all about the same except in extreme cases.

i.i.d.-assumption fails, there may be enough randomness left in the sampling
process for things to work out well enough.

For model ranking, the conditions are even weaker. We only need that the
correct ordering is preserved. This could happen even if empirical risk sys-
tematically underestimates risk so long as there is a monotone relationship
between empirical risk and risk.

With confidence intervals, however, we’re really asking for the shape of
the distribution to be of specific kind. For example, above we needed it to be
Binomial with certain parameters. As a result, confidence intervals fail more
easily than the holdout method. To appreciate this point, consider a simple
example: Take your test set and copy each data point 10 times. This doesn’t
change your benchmark at all. All empirical risk estimates are the same.
Model rankings are unchanged. But it will make the confidence intervals
overly optimistic!

Bootstrap sampling

There’s a useful heuristic, called Bootstrap, to get empirical error bars without
doing any math. The idea is to check empirically how much our estimate
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Bootstrap confidence interval for binomial proportion (n = 100)
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Figure 4.4: Illustration of Bootstrap confidence intervals. The confidence
interval is defined by the quantiles of the empirical distribution of the
estimated quantity on many repeated samples.

moves around when we repeatedly randomly draw a new sample from the
one sample that we have. More precisely, the Bootstrap works like this:

Bootstrap:
1. Compute the n loss values L = {Iy,...,1,,}, where I; = €(f (x;),y;) is
the loss of your predictor on the i-th sample.
2. Repeat 1000 times:
a. Sample n values independently with replacement from L.
b. Compute the mean of the resampled values.
3. Take the 2.5th and 97.5th percentiles of the 1000 resampled means
for a 95% confidence interval.

In other words, the confidence interval is given by quantiles of the observed
values under the resampling method. Bootstrap can be especially useful in
cases where we have a complicated loss function for which we don’t know a
mathematically derived confidence interval.

Internal versus external validity of reported numbers

Error bars only tell you about fluctuations due to random sampling. They do
not tell you that your estimate replicates under different conditions. In this
sense, confidence intervals and error bars are a measure of internal validity.
Internal validity is about whether your result would replicate if you were
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to repeat the experiment within the same setup. In the context of statistical
work, this means if you were to repeat sampling from the sample population,
how much would your estimate wiggle around? This does not—and cannot—
say anything about what would happen on a different population. Your
model might fail entirely on a dataset drawn from a different data-generating
distribution. How well results transfer from one population to another is a
yardstick of external validity.

Formal definitions of internal and external validity are somewhat futile,
as the concepts vary greatly from one discipline and scientific culture to
the next. I therefore apply a pragmatic approach throughout: Internal
validity is about generalization to more of the same. External validity is about
generalization to different populations.

Error bars and confidence intervals are a measure of internal validity. For
this reason, they tend to understate uncertainty about how well a model
works. Even if error bars are small, there are many things that can go wrong
if you try to apply your model in a different setting than the one you tested.
Nevertheless, error bars are better than nothing. If you see large error bars,
it’s a sign that there is a problem.

4.7 Notes

History of the holdout method. Stone’s 1974 article is an early study about
the holdout method and cross validation for its use in model selection.”
Stone sketches out a history of the holdout method dating back to the 1930s°.
Larson observed the shrinkage of the R? coefficient of multiple correlation
between training and testing a regression model using a random split of the
data. Following up on this, Wherry proposed a formula for adjusting the
correlation coefficient that avoids sample splitting.” Stone also mentions a
1951 Symposium: The need and means of cross-validation. Unfortunately, there
is little I know about the symposium. McCornacks 1959 attributes a method
of double cross validation to the symposium.®

In the context of pattern recognition, Benjamin Recht and I found that
benchmarks go back to a 1959 digit recognition dataset put together by
pattern recognition pioneer Bill Highleyman.” Stored on a set of punched
cards, the dataset featured a modern train-test split.'” In 1961, Highleyman
considered the two problems, accuracy estimation and model selection, we
studied here.!! Specifically, he derived binomial confidence intervals for
evaluating the accuracy of classifiers on a finite sample. Keep in mind that
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Highleyman’s study predated Hoeffding’s inequality. Even Chernoft’s bound
was still young at the time. Highleyman then considered the model selection
problem and asked what proportion of a sample should be allocated to
testing. Here, his answer wasn’t quite right, suggesting that almost all
samples should be dedicated to testing.

Benchmarks follow what Liberman calls the common task framework.'>!3

Liberman’s 2015 talk provides a valuable historical perspective on the rise
of benchmarking in the 1980s due to program managers at DARPA who
embraced the idea. A 2018 article by Church gives more context.'* Along
these lines, sociologists Koch and Peterson analyze the history of artificial
intelligence with an emphasis on the role of benchmarking since the 1980s. '

See also Donoho’s 50 Years of Data Science for additional background. '°

Cross validation and algorithmic stability. Kearns and Ron give guaran-
tees for leave-one-out cross validation under an algorithmic stability assump-
tion.!” Algorithmic stability says that the algorithm is insensitive to changes
in a single data point. Blum, Kalai, and Langford give assumptions under
which k-fold cross validation is strictly better than the holdout method. '®
Under a different algorithmic stability assumption, k-fold cross validation
provably reduces variance as k grows. '’

We encountered a stability condition in the context of McDiarmid’s in-
equality in Chapter 3. Algorithmic stability is an important concept in
learning theory, since it implies generalization bounds: If a learning algo-
rithm satisfies a suitable stability guarantee, then it must output a classifier
for which risk and empirical risk are close.'!%?%?! On the flip side, you might
argue that don’t really need the holdout method if we run an algorithm with
a provable stability guarantee to begin with.

Problems with the holdout method and cross validation. Rao, Fung, and
Rosales show how excessive use of leave-one-out cross validation can lead
to biased results.?? In a similar vein, Reunanen discusses overfitting in mak-
ing comparisons between variable selection methods using leave-one-out cross
validation.??

Dodge et al.?* argue that reporting test set performance alone can be mis-
leading and advocate for also reporting the computational budget required
to reach a certain test set performance.

Chapter 9 in Fairness and Machine Learning critically examines the test sets
from the perspective of measurement and construct validity.”> The chapter
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contains many pointers to additional resources on this aspect.

Machine learning competitions. Kaggle is a commercial platform for host-
ing competitions. CodaLab is an open source platform for organizing ma-
chine learning competitions?. The platform has hosted numerous compe-
titions. CodaLab competitions build on CodaLab worksheets that provide
tools for doing reproducible experimental and computational workflows
(https://codalab.org/). Isabelle Guyon, Percy Liang, Evelyne Viegas are
key figures in the creation and development of CodaLab. CodaLab goes
back to 2013, predating Jupyter Notebook and Google Colab. Guyon, Pavao,
and Viegas are currently editing a book on machine learning competitions
(https://book.chalearn.org/), drawing on many years of experience with
competitions.?” The book contains a wealth of practice insights and back-
ground about machine learning competitions. Ustyuzhanin and Carlens
survey competition platforms.?®

Statistics background. Wasserman’s All of Statistics is also good back-
ground reading for the statistics in this chapter.’’ Chapter 7 of The Elements
of Statistical Learning covers cross validation and the Bootstrap.! Chapter 8
of A Probabilistic Theory of Pattern Recognition covers the classical guarantees
of the holdout method.>" For an accessible entry point aimed at machine
learning practitioners, Miller discusses recommendations for error bars and
confidence intervals in the model evaluation context. !

22


https://mlbenchmarks.org
codalab.org
book.chalearn.org

[1]

[10]
[11]

[12]

Bibliography

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statis-
tical Learning: Data Mining, Inference, and Prediction (Corrected 12th printing).
Springer, 2017.

Francis Bach. Learning theory from first principles. MIT press, 2024.

Richard O. Duda and Peter E. Hart. Pattern Classification and Scene Analysis.
Wiley New York, 1973.

Antonio Torralba and Alexei A Efros. Unbiased look at dataset bias. In
Conference on Computer Vision and Pattern Recognition (CVPR), pages 1521—
1528. IEEE, 2011.

Mervyn Stone. Cross-validatory choice and assessment of statistical predictions.
Journal of the royal statistical society: Series B (Methodological), 36(2):111-133,
1974.

Selmer C Larson. The shrinkage of the coefficient of multiple correlation.
Journal of Educational Psychology, 22(1):45, 1931.

Robert ] Wherry. A new formula for predicting the shrinkage of the coefficient
of multiple correlation. The annals of mathematical statistics, 2(4):440-457,
1931.

Robert L. Mc Cornack. An evaluation of two methods of cross-validation.
Psychological Reports, 5:127-130, 1959.

Wilbur H. Highleyman and Louis A. Kamentsky. A generalized scanner for
pattern- and character-recognition studies. In Western Joint Computer Confer-
ence, pages 291-294, 1959.

Moritz Hardt and Benjamin Recht. Patterns, predictions, and actions: Founda-
tions of machine learning. Princeton University Press, 2022.

Wilbur H Highleyman. The design and analysis of pattern recognition experi-
ments. Bell System Technical Journal, 41(2):723-744, 1962.

Marc Liberman. Reproducible research and the common task method, 2015.

23


https://mlbenchmarks.org

[13]
[14]

[15]

[16]

[17]

(18]

Mark Liberman. Obituary: Fred Jelinek. Computational Linguistics, 36(4):595-
599, 2010.

Kenneth Ward Church. Emerging trends: A tribute to charles wayne. Natural
Language Engineering, 24(1):155-160, 2018.

Bernard ] Koch and David Peterson. From protoscience to epistemic monocul-
ture: How benchmarking set the stage for the deep learning revolution. arXiv
preprint arXiv:2404.06647, 2024.

David Donoho. 50 years of data science. Journal of Computational and Graphical
Statistics, 26(4):745-766, 2017.

Michael Kearns and Dana Ron. Algorithmic stability and sanity-check bounds
for leave-one-out cross-validation. In Conference on Computational Learning
Theory (COLT), pages 152-162, 1997.

Avrim Blum, Adam Kalai, and John Langford. Beating the hold-out: Bounds
for k-fold and progressive cross-validation. In Conference on Computational
Learning Theory (COLT), pages 203-208, 1999.

Satyen Kale, Ravi Kumar, and Sergei Vassilvitskii. Cross-validation and mean-
square stability. In ICS, pages 487-495, 2011.

Olivier Bousquet and André Elisseeff. Stability and generalization. Journal of
machine learning research, 2(Mar):499-526, 2002.

Shai Shalev-Shwartz, Ohad Shamir, Nathan Srebro, and Karthik Sridharan.
Learnability, stability and uniform convergence. The Journal of Machine Learn-
ing Research, 11:2635-2670, 2010.

R Bharat Rao, Glenn Fung, and Romer Rosales. On the dangers of cross-
validation. an experimental evaluation. In International Conference on Data
Mining, pages 588-596. SIAM, 2008.

Juha Reunanen. Overfitting in making comparisons between variable selection
methods. Journal of Machine Learning Research, 3(Mar):1371-1382, 2003.

Jesse Dodge, Suchin Gururangan, Dallas Card, Roy Schwartz, and Noah A
Smith. Show your work: Improved reporting of experimental results. arXiv
preprint arXiv:1909.03004, 2019.

Solon Barocas, Moritz Hardt, and Arvind Narayanan. Fairness and Machine
Learning: Limitations and Opportunities. MIT Press, 2023.

Adrien Pavao, Isabelle Guyon, Anne-Catherine Letournel, Dinh-Tuan Tran,
Xavier Baro, Hugo Jair Escalante, Sergio Escalera, Tyler Thomas, and Zhen
Xu. Codalab competitions: An open source platform to organize scientific
challenges. Journal of Machine Learning Research, 24(198):1-6, 2023.

24


https://mlbenchmarks.org

[27] Isabelle Guyon, Adrien Pavao, and Evelyne Viegas, editors. AI Competitions
and Benchmarks: The Science Behind the Contests. ChaLearn, 2024.

[28] Andrey Ustyuzhanin and Harald Carlens. Ai competitions and benchmarks:
Competition platforms. arXiv preprint arXiv:2312.05185, 2023.

[29] Larry Wasserman. All of statistics: a concise course in statistical inference.
Springer Science & Business Media, 2013.

[30] Luc Devroye, Laszl6 Gyorfi, and Gabor Lugosi. A probabilistic theory of pattern
recognition, volume 31. Springer Science & Business Media, 2013.

[31] Evan Miller. Adding error bars to evals: A statistical approach to language
model evaluations. arXiv preprint arXiv:2411.00640, 2024.

25


https://mlbenchmarks.org

	Holdout method
	Testing on the training set
	Generalization
	Guarantees of the holdout method
	Model selection
	The iron vault

	What's the holdout method for?
	Signals for model development
	Model ranking
	Measuring capabilities

	Variants of the holdout method
	More than two splits
	k-fold cross validation

	Error bars and confidence intervals
	Bootstrap sampling
	Internal versus external validity of reported numbers

	Notes


