5
Test set reuse

Statistics prescribes the iron vault for test data. But the empiri-
cal reality of machine learning benchmarks couldn’t be further
from the prescription. Repeated adaptive testing brings theoret-
ical risks and practical power.
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In the previous chapter, we derived powerful theoretical guarantees for the
holdout method. Unfortunately, these guarantees hold only under one-time
use. If a researcher builds a model based on prior interactions with the
holdout set, the holdout set loses its formal guarantees. In this chapter, we
develop a theoretical model that accommodates how people actually use the
holdout method in practice. We then work out generalization bounds in this
setting, contrasting them with the results of the previous chapter.

5.1 Test set reuse in machine learning benchmarks

Machine learning benchmarks typically have a fixed test set known to re-
searchers. Researchers freely use the test set for evaluation purposes. Sci-
entific papers report new achievements on the test set. Subsequent work
builds on prior evaluations. The central goal is to move ahead the state of the
art, that is, to advance the performance of the best known model on the test
set. In doing so, researchers work with the test set incrementally. They do
what Duda and Hart called training on the test set. Researchers incrementally
refine their model by repeated evaluations against the test set.

We call scientific analyses that depend on the test set adaptive. Results
that in some way depend on the test set have been adapted to the test set.
Likewise, adaptivity refers to the practice of using a test set incrementally
and interactively to inform scientific analyses and processes, such as model
building.

Adaptive data analysis

To reason about adaptivity, it is helpful to frame the problem as an interac-
tion between two parties. One party holds the dataset S. Think of this party
as implementing the holdout method. The other party—called analyst—
can query the dataset by requesting an estimate of the risk R(f) for a given
predictor f on the dataset S. In reality, the two parties might be one and the
same researcher. Nevertheless, conceptually it will be quite helpful to think
of the problem as an interaction between two parties.

The standard holdout method returns the empirical risk Rg(f) given a
query function f: X — ). But we’ll allow for other methods that don’t
necessarily output the empirical risk. It turns out that there are interesting
alternatives to the standard holdout mechanism that enjoy stronger guaran-
tees. Intuitively, these alternatives limit the amount of information about
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Figure 5.1: An adaptive analyst interacts with a dataset repeatedly.

the holdout set revealed by each estimate.

Throughout this chapter, we restrict our attention to the case of the zero-
one loss and binary prediction, although the theory extends to other settings.

The two parties interact for some number k of rounds, thus creating a
sequence of adaptively chosen predictors fi,..., fr. Keep in mind that this
sequence depends on the dataset! In particular, when S is drawn at ran-
dom, f,,..., fr become random variables, too, that are in general not indepen-
dent of each other.

Adaptive analysts

Formally, an adaptive analyst is an algorithm A that, given a sequence f}, Ry, ..
of queries and responses, returns a new query f;,1: X — Y, where we
let f; = A(D) be the first query the analyst chooses. We assume that the
analyst A is a deterministic algorithm.

A useful idea is that we can represent an adaptive analyst A as a tree.
The root node is labeled by f; = A(0), i.e., the first function that the ana-
lyst queries without any context. The holdout mechanism then returns a
response R;. This response is generally a sample quantity like the empirical
risk. Note that the empirical risk Rg(f;) can only take on n+1 possible values.
This is because we consider the zero-one loss, which can only take the values
in the set R ={0,1/n,2/n,...,1}. So, it makes sense to assume that R; € R
takes values in the same set. We can always achieve this by rounding R; to
the nearest multiple of 1/n without changing the response significantly.

Each possible response value r € R creates a new child node in the tree cor-
responding to the function f = A(r) that the analyst queries when receiving

S fo Ry
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Figure 5.2: Constructing a tree of depth k and degree n + 1 representing an
adaptive analyst. Each node corresponds to the predictor the analyst chooses
based on the responses seen so far.

the response r to the first query f;. This gives us n+ 1 children to the root
node, one for each possible response r € R. Each child corresponds to one
function. In this manner, we recursively continue the process until we have
a tree of depth k and degree n + 1.

Note that this tree depends only on the analyst A and how it responds to
all the possible transcripts that can occur in the interaction with a holdout
set. The tree does not depend on the random sample, however. The tree
is therefore data-independent. It’s an explicit representation of the algo-
rithm A. This property is a useful tool for proving generalization bounds in
the adaptive setting.

5.2 Guarantees of the holdout method under adaptivity

We can now derive guarantees for the holdout method in the adaptive analyst
model. The idea is to fix an analyst and apply the analysis from Chapter 4 to
all the functions appearing in the tree corresponding to the analyst.

Proposition 1. For any sequence of k adaptively chosen predictors fy,..., fx, the
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holdout method satisfies with probability 1 -0,

H’{gg{lAs(ﬂ)l S\/klog(4(n+1)/6)} s

2n

Proof. Fix an adaptive analyst A and the corresponding tree. The tree is of
size

+ 1)k -1
1+(n+1)+(n+1)2+---+(n+1)k:uszm+1)k.
n

Let F be the set of functions appearing at any of the nodes in the tree. Since
each node has one function, we have

|F| < 2(n+1)k.

Moreover, the set of functions is fully determined by the algorithm A and
therefore does not depend on any sample. Now, pick a random sample S
of size n. The model selection guarantee for the holdout method from the
previous chapter gives us for every 6 > 0,

log(2|F|/9) ]
]P{r?eanlAS(ft)lS Z—H}Zl_b'

Plugging in the upper bound on |F|,
log(2|F|/0) < klog(4(n+1)/0).

This completes the proof.
O

In the typical regime where k > log(n) is at least logarithmic in #n and 6 >
1/n is not too small, the bound on the maximum error simplifies to O(\/k/_n).
This contrasts with the bound O(4/log(k)/n) that we obtained in the non-
adaptive setting.

Analyst Error bound

non-adaptive vl1og(k)/n)

O(
adaptive O(Vk/n)
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The dependence on k in the adaptive setting is exponentially worse than
in the non-adaptive setting. This raises the question if there’s a way to do
better.

Climbing the leaderboard without looking at the data

So far, the guarantee of the standard holdout mechanism that we have in the
adaptive case is exponentially worse in k compared with the non-adaptive
case. As it turns out, this is inevitable in the worst case. What we’ll work out
is a worst-case lower bound on the gap between risk and empirical risk in
the adaptive setting. To prove such a lower bound it is enough to exhibit an
adaptive analyst that forces a large gap.

Indeed, there is a fairly natural sequence of k adaptively chosen predictors,
resembling the practice of ensembling, on which the empirical risk diverges
from the risk by at least Q(Vk/n). This matches the upper bound from the
previous section up to a constant factor. In particular, with k ~ n queries, we
can force a constant generalization gap. The lower bound is worst-case: It
only holds for this one analyst and doesn’t say anything about the typical
behavior of the holdout method.

Throughout, we focus on zero-one loss in a binary prediction problem.
The core idea extends to many other settings.

Overfitting by ensembling:
1. Choose k random binary predictors fi,..., fr: X — {0, 1}.
2. Compute the set I = {i € [k]: Rg[f;] < 1/2}.
3. Output the predictor f = majority{f;: i € I} that takes a majority
vote over all the predictors computed in the second step.

The key idea of the algorithm is to select all the predictors that have
accuracy strictly better than random guessing. This selection step creates a
bias that gives each selected predictor an advantage over random guessing.
The majority vote in the third step amplifies this initial advantage into a
larger advantage that grows with k. If we want to be a bit more clever, we
don’t have to throw away any functions at all. If Rg[f;] > 1/2, we know that
flipping all the bits gives Rg(1 — f;) < 1/2. So, we can include 1 — f; in the
ensemble. This saves us a factor two in the number of queries we make.

In practice, we can do a bit better still by weighting each function with its
advantage over random guessing. The larger the advantage, the larger the
weight of the function in the ensemble. This makes intuitive sense and leads
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Overfitting by ensembling (n = 10000)
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Figure 5.3: Overfitting by ensembling on a test set of size n =10000. Thou-
sand queries force a generalization gap of 10%.

to some improvements. What this algorithm essentially does is boosting.
Boosting is a well-known technique for turning weak predictors into strong
predictors.

The next proposition confirms that indeed this strategy finds a predictor
whose empirical risk is bounded away from 1/2 (random guessing) by a
margin of Q(Vk/n). Since the predictor does nothing but taking a majority
vote over random functions, its risk is of course no better than 1/2.

Proposition 2. For sufficiently large k < n, overfitting by ensembling returns a
predictor f whose classification error satisfies with probability 1/3,

Rs(f) < 5 - Q(Vk7m).

In particular, Ag(f) > Q(Vk/n).
Proof. (Sketch)

The formal proof is a bit tedious, but it’s good to develop the intuition.

On a randomly chosen function the number of errors on the test set S
is distributed according to the binomial distribution B(n,1/2). We expect
to see n/2 errors and one standard deviation is y/n/2. This is because the
variance of B(n,p) is np(1 —p).
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When we observe that Rg(f;) < 1/2 for a randomly chosen f;, we know that
it makes fewer than n/2 errors on the test set. But apart from this condi-
tion, the errors are still randomly distributed. So, we get the distribution
of B(n,1/2) conditional on falling below its mean. The mean of this condi-
tional distribution is smaller than n/2 — /n/2. If it’s below the mean, it’ll be
so by at least one standard deviation more than half the time.

This is the first part of the argument. Our selection step biases the func-
tions to make about /n fewer errors on the test set than a random function.

How many functions do we select? In other words, how large is the index
set I? Since the binomial distribution is symmetric around its mean, the
probability of any given function being selected is about 1/2. So we expect
the index set to be of size m = k/2. In fact, m concentrates around k/2.
Therefore, we can be pretty sure that we select at least, say, k/4 functions.
Up to constant factors, we can think of m and k as being the same.

To summarize, we know that we select many functions and each function
we select is a bit better than random guessing.

The last step is to show that the majority vote amplifies this small advan-
tage over random guessing. This is the same kind of argument we do when
we reason about ensembling methods. Taking the majority vote over many
experts—each a bit better than random guessing—results in a more accurate
prediction.

So, consider the majority predictor f = majority(f;: i € I}. Fix a data
point (x,v) € S. What is the probability that f makes a mistake on x? For
convenience, assume y = 1. The case of y = 0 is the same. By definition, the
majority classifier makes a mistake if more than half the functions in I vote 0.

Formally,
m
) Stk <3

i€l
What is the chance that this happens? The errors that each f; makes on the
test set are randomly located, since our selection step is invariant under
permutation of the test set. Therefore, each function we select is correct on x
with probability 1/2 + € for some € > 1//n.

This means that the random variable X =) ;; fi(x) follows the binomial
distribution B(m, 1/2 + €). Its mean and variance are

EX = % vem,  VX=m(1/2+¢€)(1/2—¢) < m/4.

For the majority vote f to be wrong, the random variable X has to be below
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its mean by an additive em. Since a standard deviation is less than \/n, this
deviation is equivalent to e/m in units of standard deviation. Note that

Since we assume k < n, we're talking about less than one standard deviation.
For large enough 7 and constant p, the binomial distribution B(n, p) behaves
very much like a normal distribution with mean np and variance np(1 - p).
Within one standard deviation of its mean, the normal distribution acts a lot
like a uniform distribution. In particular, we can calculate that a deviation
of Vk/n below its mean has probability less than 1/2 — cVk/n up to some
positive constant ¢ > 0 in front of the Vk/n term.

So, we can conclude that the probability of a mistake by our majority vote

is at most
m 1 k
IP{ E ](I(X)<E}S E—C\/;,

iel

for some positive constant ¢ > 0. Written differently, this means

That’s what we wanted to show. This concludes the proof sketch.
O

Zooming out again, ensembling by majority voting shows that the problem
of “training on the testing data” is real. In the worst case, holdout data can
quickly lose its guarantees.

5.3 Alternatives to the holdout method

If this pessimistic bound manifested in practice, popular benchmark datasets
would quickly become useless. You might wonder if there’s anything we can
do about the pessimistic lower bound we just encountered. So far, we've
analyzed the standard holdout method that returns the exact empirical
risk Rg(f) given a query function f. There’s hope that alternative mecha-
nisms might have stronger guarantees. For example, we could release an
approximate answer rather than an exact answer. We have to be a bit careful
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though. The argument from the previous section extends to the case where
the holdout method only gives approximate answers so long as these are
within o(1/+/n) from the exact answer. The reason is that 1/4/n is roughly one
standard deviation of the empirical risk. If all answers deviate less than one
standard deviation, the argument is roughly the same. So, the solution isn’t
as easy as rounding the answer to four digits of precision. This is a common
heuristic in machine learning competitions, but it has no formal guarantees.

Nevertheless, a related idea works. If we carefully add noise to each answer
we can improve dependence on k from Vk to k!/4. This alternative holdout
method permits a quadratic number k = n? of queries before it becomes
useless in the worst-case.

The proof of this result is surprisingly tricky and requires several tools that
are beyond the scope of this chapter. The key idea is based on the privacy
guarantee differential privacy. If you can make the holdout mechanism
differentially private, then no adaptive analyst can learn about the test
set enough to overfit to it. This is a theorem that forms the basis for the
alternative mechanism that uses noise addition to achieve the quadratic
number of queries.

Unfortunately, researchers also showed that in the worst-case no holdout
mechanism can give an answer to more than a quadratic number of queries
with small constant error on every query. Keep in mind this is a worst-case
impossibility result. It does not say what we should expect in practice under
typical conditions.

The bounds in the previous chapter are optimistic. They are strong, but
they require an assumption that is clearly violated in practice. The bounds
in this chapter go about it from the other end. They allow for powerful
adaptive analyses, like those you’ll see in practice. The downside is that
we end up with fairly pessimistic worst-case guarantees. If we typically
encountered these bounds in practice, holdout sets would have a serious
problem. Both perspectives are useful though. One tells us the best that we
can hope for. The other shows the worst that could happen.

In the next chapters we’ll look at the empirical phenomena around test
set reuse in machine learning research. Then we’ll return to theoretical
arguments that better capture the empirical phenomena. Before we get there
it’s worth looking at the problem of adaptivity in the context of statistics.

10
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5.4 Freedman’s paradox

The problem with the holdout method we just saw has a close cousin in
the field of statistics that goes by the name of Freedman’s paradox. The
statistician David Freedman pointed out this problem in 1983, although he
thought that his observation was neither new, nor a paradox.

The problem routinely arises in the context of variable selection for statis-
tical modeling. If we first select variables in a data-dependent way and then
fit a model on the selected variables, the model will appear to be better than
it is. At a high-level this is directly analogous to the ensembling procedure
we discussed above. The details are different though and require a bit of
statistical nomenclature that we’ll develop next.

Freedman considers a linear regression problem

y=Xp+1,

where the error term 1 ~ N(0,0?) is sampled from a centered Gaussian
distribution with variance 2. The matrix X has shape n x d where 7 is the
number of observations and d is the number of features. The vector € R?
corresponds to unknown the true solution of the equation system that we’'d
like to recover. We only observe the matrix X and the vector y.

Least squares regression solves the objective
- 3 2
min  [|Xf - pl|°.
peRrd
Let 9 = X denote the optimal solution to least squares. Due to the noise in
the system of equations, we can’t hope to recover p exactly.

The situation statisticians really want to avoid is that f = 0 but somehow
we come away thinking that § # 0. The case = 0 corresponds to the situation
where there is no signal in the data. The vector y is just a random normal
vector with no dependence on X. Statisticians call this a null model. A null
model is simply a data-generating distribution corresponding to the case
where there is nothing to be discovered. In contrast, the case f # 0 means
that there is some true relationship between X and y that we would like to
discover and report.

To test if we’re dealing with the null model, statisticians use hypothesis
tests. A common one is the F-test that is based on the observed F-value
obs _ ”ﬁ_?llz/d
ly -9l*/(n-d-1)
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Here, 7 is the mean y = Y /| v; of our observations. We call F°® the observed
F-value, since it’s the one we compute from our sample.

The observed F-value is the test statistic. The way the hypothesis test works
is that we’re going to reject the null model if the observed F-value is above
a certain threshold, call it . Under the null model, the observed F-value
follows an F-distribution. It doesn’t matter what exactly this distribution is.
It’s just some continuous distribution we can compute.

The probability that the F-value we observe exceeds some threshold 7
is given by 1 — CDF(7), where CDF is the cumulative density function of
the F-distribution. The probability that the F-value exceeds the value we
observed is therefore

p=1-CDE(F°),

Here, the tail probability p is called the p-value of the test. The p-value is
the probability under the null model that the F-distribution exceeds the
value F°bS we observe.

That means p-values are tail probabilities under the null model.

A fact called integral probability theorem implies that CDF(F°) follows the
uniform distribution Uniform([0, 1]) over the interval [0, 1]. Therefore, the
distribution of a p-value under the null model is the uniform distribution.
This is the only fact about p-values we’ll need.

So far, everything is working as intended. The p-values we see under the
null model are uniformly distributed as they should. The chance of seeing
a p-value as small as 0.05 is, by construction, at most 5%. This is the now
infamous significance level at which statisticians will reject the null hypothesis.
The idea is that seeing p < 0.05 renders the null model implausible.

Variable selection

Here’s the problem. Our goal is not only to avoid rejecting the null model
when g = 0. This alone would be easy: Never reject anything. But our goal
is also to actually reject the null model when g # 0 and so we should. The
higher the dimension d of our regression problem, the harder it generally
is to find signal in the data. Therefore, it is common practice to first select
some promising variables from the set of all variables, before fitting a model
on the selected variables.

To select variables, we can again perform hypothesis tests. Specifically,
we can test individual coefficients in the regression model to see if they are

12
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significantly large using the T-statistic:
TP = fifs;, with 57 =6*(XTX);j

Call the p-value associated with the j-th test p;. That is, p; is the probability
of seeing a value as extreme as T] under the null model, i.e., p = 0 and
Gaussian errors. Again, under the null model all these p-values are uniformly
distributed.

Now consider the following two step procedure:

Regression after variable selection:
1. Select all variables with p; < 0.25. Call that index set I.
2. Solve a regression problem on Xj, the n x|I| matrix where we retain
only the columns in X corresponding to selected variables.

Since the p-values in the first step are all uniformly distributed, the se-
lection step simply picks a random subset of roughly d/4 variables. Any
variable is equally likely to be chosen. Starting from p = 0, of course, there’s
still no signal in the linear system given by X; and y. So, we still shouldn’t
reject the null hypothesis.

What Freedman observed, however, is that the p-value corresponding to
an F-test on the final model is sharply biased towards smaller p-values.
We're therefore much more likely to reject the null hypothesis (f = 0) than
we should be.

The problem Freedman discovered is now often called inference after se-
lection. We first select variables and then we’d like to do inference, i.e.,
compute p-values or confidence intervals, on the selected variables. There’s
nothing specific about F-tests or T-tests in this example. It’s a fundamental
problem with two-stage data-dependent analyses.

A safe way to do this is to perform the two steps on independent data sets.
So, in a sense, sample splitting solves this two step problem. Statisticians
have also come up with a number of clever methods to do the two steps
correctly on the same sample.

More broadly, Freedman’s paradox relates to a practice that later became
known as p-hacking. The term describes the practice deliberately choosing
an analysis in a data-dependent way so as to find a significant p-value.
We’ll return to this problem in the next chapter. Freedman’s observation
foreshadowed problems to come.
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Histogram of F-test p-values over 5000 runs
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Figure 5.4: Biased p-values in Freedman’s two-stage regression with n = 1000
samples and d = 50 variables

5.5 Notes

Dwork et al.'~® initiated the study of adaptive data analysis. Tools from

differential privacy give variants of the holdout method that have stronger
guarantees under adaptive use. The idea is to add a sufficient amount of
noise to each empirical risk computation on the holdout data. Whereas
the plain holdout method supports linear number of queries in the worst
case, a holdout method based on noise addition can support a quadratic
number of queries. Bassily et al.* improved the error bounds compared
with the suboptimal bounds by Dwork et al. Under cryptographic hardness
assumption, however, no holdout method can support more than a quadratic
number of queries.”

Blum and Hardt® study holdout reuse in the context of machine learning
benchmarks. The key observation they make is that ranking is different
from evaluation: If the goal is to identify the best model from a sequence of
model evaluations, a variant of the holdout method supports an exponential
number of queries. We will return to this result in a later chapter. In the
same paper, they also point out how the basic holdout method fails in the
adaptive setting due to overfitting via ensembling. Hardt provided a proof
of this proposition in a subsequent paper.” Dwork et al.” gave a similar
argument for how adaptively fitting a linear model can lead to the same
deviation between risk and empirical risk. Feldman, Frostig, and Hardt

14
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further develop the connection between boosting and overfitting.®

Freedman described the problem with p-values after selection in a short
1983 paper.’ Freedman neither called it a paradox, nor did he believe that
the observation was new. Nevertheless, his note has been quite influential.
There’s now much work on this problem in statistics under the name post-
selection inference'’ or inference after selection''. Hastie, Tibshirani, and
Friedman discuss a variant of Freedman’s paradox in the context of cross
validation in Chapter 7.10.2 of their book.'?

While adaptivity brings theoretical challenges, many recognize the need
for permitting adaptivity in statistical analysis. In particular, John Tukey
and and George Box both advocated for allowing incremental progress in
data analysis.'>'* See also the argument by Gelman and Loken '° that we’ll
return to in the next chapter.
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