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Scientific crisis

A replication crisis has long gripped the empirical sciences. Sta-
tistical practice is vulnerable for fundamental reasons. Under
competition, researcher degrees of freedom outwit statistical
measurement.
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The previous chapter covered the theoretical dangers of data-dependent
analyses and test set reuse. When scientists evaluate models that depend
on the data, the reported numbers can be wrong. This applies equally to
test sets in machine learning as it does to common statistical analyses. In
this chapter we take a closer look at the empirical reality of the problem.
We start with the so-called replication crisis that has long gripped applied
statistical sciences. The discussion here isn’t directly about machine learning.
Nevertheless, it will teach us general lessons about what makes statistical
analysis vulnerable. These insights apply also to the problem of replication
in machine learning, which is the topic of the next chapter.

6.1 The replication crisis in the statistical sciences

Statistical methodology is the foundation of empirical work in many scien-
tific fields including psychology and social psychology, medicine and the
biomedical sciences, economics, neuroscience, and political science. The
replication crisis refers to the empirical reality—past and present—that many
scientific findings fail to replicate. Simply put, failure to replicate means
that a research team tries to show the finding of a previous study in another
setting but doesn’t succeed.

The problem gained widespread attention a couple of decades ago and has
been a topic of debate stretching beyond academic circles. Methodologically,
the replication crisis is closely tied to the statistical tradition of null hypoth-
esis significance testing. To understand the debate, it’s therefore helpful to
develop a high-level understanding of hypothesis testing. At the technical
level, this won’t add anything we haven’t seen already, but there is a bit of
new terminology.

Why even bother with p-values and hypothesis testing at this point? You’'d
be right to ask. Why should you wrap your head around what seem like a
statistical relic that’s caused so much confusion? If p-values were the sole
culprit of the replication crisis—nothing more than a grave methodological
mistake—and there was an easy fix by swapping them out for a better statis-
tic, I'd say you probably shouldn’t. But the replication crisis that unfolded
around null hypothesis testing reveals something more fundamental about
the use of statistics under competitive pressure. It’s this broader insight that
we’re working towards, which will transfer to machine learning research as
well.
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A minimal primer on p-values

The example of Freedman’s paradox in the previous chapter prepared us
well. But let’s start from scratch. The main fact we need is that p-values are
tail probabilities of the null model. The null model is the data-generating
distribution under the null hypothesis. By convention, the null hypothesis
captures a situation of no signal, e.g., the treatment has no effect. In this case,
a scientist should not report a finding.

To give a formal example, a simple null model to think of is a fair coin
taking values in {1, 1} with mean 0, representing the situation that a treat-
ment effect is 0. If we take n samples from the null model and average them
out, we get a value that concentrates around 0. From Chernoff’s bound in
Chapter 3, we know that the tail probability p of seeing a value € > 0 or
greater is at most

p <exp(—€*n/2).

This tail probability is the p-value. The sample average in this example
is called the test statistic in the language of null hypothesis testing. The
value € corresponds to the observed value of the test statistic. The larger the
observed test statistic, the smaller the p-value.

Although this is just one example, many commonly used tests have sub-
gaussian tails of the form p = exp(—ce®n) where ¢ > 0 is some constant. Any
such tail expression is a just different way to write €?n. To say that a p-value
is small is therefore equivalent to saying that

n>1/e2.

This is the fundamental lesson from Chapter 3: Sample size requirements
scale quadratically in the inverse of the difference that we’re trying to detect.
A p-value is small if this sample size requirement is met. That’s all. There’s
nothing new here other than terminology.

When you think of p-values as tail probabilities, an important issue stands
out right away. Knowing both € and n may be more helpful than knowing p
alone. The reason is that the p-value conflates two situations:

» small effect, large sample
* large effect, small sample

As a scientist, you probably shouldn’t be indifferent between the two. You
might prefer a large effect shown with a small sample over a tiny effect
shown with a vast sample. But from seeing the p-value alone, you can’t


https://mlbenchmarks.org

decide which case it is. Large datasets make p-values small, even if there is
no large effect. Don’t mistake small p-values for large effects.

Null hypothesis tests either reject the null hypothesis or they don’t. The de-
cision criterion for rejection is that the p-value is below a certain threshold «
called significance level. Statistical tradition enshrined a significance level
of a = 0.05. If the p-value comes out below the significance level of 0.05,
scientists will report a significant finding. In the common caricature of the
scientific process, a significant p-value means that the scientist gets to pub-
lish the finding as a scientific discovery. In reality, there’s of course a lot more
going on, but the caricature is helpful for the sake of argument.

Keep in mind, a significant p-value says nothing more than that the sample
size requirements are met for the kind of analysis you claim to be doing. To
think of this condition on its own as a scientific discovery is unjustified.

Call a rejected null hypothesis a positive and a null hypothesis that stands
a negative. Rejecting a null hypothesis that’s true is a false positive, we
incorrectly declare discovery. Of course, we can always avoid false discovery
by never rejecting a null hypothesis. But we also want to reject a false null
hypothesis with high probability. This requires specifying an alternative
hypothesis H;. In contrast with the null hypothesis (Hy), the alternative
hypothesis Hy captures the case of there is signal in the data, e.g., the treatment
is effective.

Once we have an alternative hypothesis, we can talk about the probability
of rejecting the null hypothesis when the alternative is true. This quantity is
called the power of the test:

power = [P{reject null Hy | alternative H; true}

By convention, statisticians recommend tests with power at least 0.8. In the
language of prediction from Chapter 2, statistical power is the same as the
true positive rate of the test. It’s the probability of declaring a positive given
that we have a positive. Recall that this is the same as one minus the false
negative rate.

6.2 Propensity of false positives

At this point there are several meta studies about the replicability of empir-
ical findings. In a major effort, published in 2015, researchers conducted
replication attempts of 100 experimental and observational studies from
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Figure 6.1: Illustration of statistical power. The null model is a Gaussian of
mean zero. The alternative is a Gaussian of mean 2.

three major psychology journals.! The studies all used sufficiently high-
powered tests.

The results of the meta study are sobering. Whereas almost all of the origi-
nal studies reported significant results (p <.05), only 36% of the replication
attempts yielded p-values below the 0.05 level. Effect sizes also didn’t fare
too well. Only 47% of the original effect sizes were in the 95% confidence
interval of the replicated effect size. Put differently, less than half of the
published papers replicated.

Scatter plots are a nice way to visualize such replication studies. On
the x-axis we have the original effect size. On the y-axis, we look at the
replicated effect. The main diagonal corresponds to perfect replication. Most
studies fall below the main diagonal, implying that the replicated effect size
is smaller than the original. At the same time, there is a strong positive
correlation between effect sizes in the original study and the replicated
result.

Half of published papers are false?

Long before the meta study mentioned above, the epidemiologist John Ioan-
nidis made a thought-provoking back of the envelope calculation suggesting
that most published papers are wrong.
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Figure 6.2: Scatter plot showing the original effect sizes versus replicated
effect sizes.

The argument is simple and has aged well. What we need to start is a
number py., corresponding to the pre-study probability that a random state-
ment in a community is true. This probability must come from some kind
of story about what statements the community studies. A more ambitious
community might have a smaller value, a more incremental community
might have a larger value. So, we're going to pull this number out of the hat

eventually.

Scientists run analyses that either output positive or negative. If an analysis
is positive, the scientist publishes the statement as a discovery. The true
positive rate corresponds to the probability that the scientist publishes a
true statement:

* True positive rate (TPR): P{positive | true} =1 -

As we observed above, this is the same concept as power in the context of
hypothesis testing. The false positive rate is the probability that the scientist
publishes a false result:

* False positive rate (FPR): IP{positive | false} = «
Now, consider the probability

P{true | positive}

corresponding to the event that we actually have a true finding given that we
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declared a finding? This is what’s called precision or positive predictive value
(PPV) in the context of prediction. In the context of scientific discovery, we
can interpret it as the post-study probability of a true statement. It tells us
what the fraction of true statements is among published results.

A calculation using Bayes’ rule reveals a standard textbook formula that
relates all these quantities:

TI)Rptrue
TPRptrue + FPR (1 - ptrue)

PPV =

Plugging in the parameters,

(1 - ﬁ)ptrue

PPV = .
(1 - ﬂ)ptrue + 0((1 _ptrue)

In particular, PPV > 1/2 if

(1 _/)))ptrue 2 a(l _ptrue)-
If PPV < 1/2, loannidis says most published findings are wrong.

Let’s fill in reasonable values for «, 8, and the baseline rate of true state-
ments:

* Significance level a = 0.05, commanded by statistical tradition.
* Power 1 - = 0.8, considered to be reasonable.
* Baseline rate py;ye = 0.1. This is a guess.

With these settings, we get PPV = 0.64, a value just a bit larger than 1/2.
Most published research findings aren’t wrong yet.

In order to get a value below 1/2, Ioannidis considers the role of publication
bias. Formally, publication bias corresponds to a certain probability u that a
result gets published regardless of its truth value due to pressure to publish.
This changes TPR and FPR as follows:

* TPR = P(positive |true)=1-Bf+upf=1—-(1-u)p
» FPR = P(positive |false) =a+u(l-a)=(1-u)a+u

Publication bias actually increases the true positive rate. After all, more
things get published, hence also the true ones. This is good. But the big issue
is with the adjustment to the false positive rate that basically jumps up by
an additive u.

Plugging in default values and the choice of u = 0.05, again a guess, we

have
PPV =0.48.
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Now we can say at last that more than half of published findings are probably
false.

Ioannidis” argument sparked a healthy debate. Several responses to the pa-
per pointed out some obvious and some not so obvious issues with the setup
and the assumptions.’~* Ultimately, though, many found Ioannidis’ claim
plausible. In particular, the replication study above—published ten years
later—supports the claim. If nothing else, Ioannidis sparked an important
conversation in the statistical sciences that’s continuing to this day.

6.3 Perspectives on false discovery

If we accept the propensity of false discovery in the statistical sciences as an
empirical fact, the next question is: Where do false discoveries come from?
Why are there so many? Answers to these questions go back decades.

Popper and the soft sciences

Paul Meehl is a towering figure in statistics and psychology. He’s best known
as a sharp and vocal proponent of statistical methods over human decision
making in clinical settings, a scientific program he pursued for more than
four decades.>® His work had a profound influence generations of scientists.
Among those Meehl influenced is the psychologist Daniel Kahneman, whose
scientific legacy centers on biases in human decision making.

Meehl’s work on statistics ran into questions about how we come to know
things from data, and how statistical data analysis relates to scientific inquiry
more broadly. For much of his life, Meehl nurtured a deep interest in the
philosophy of science, writing prolifically about the subject. He also ran
a center of philosophy of science at the University of Minnesota that drew
famous visitors like Paul Feyerabend, the iconoclast of anything goes.

In the 1970s, Meehl was rather infatuated, so he said, with Popper’s phi-
losophy of science and, in particular, the idea that science advances through
falsification. Popper held that science can’t verify, but it can falsify the
predictions that a theory makes. Science advances by developing theories
incrementally that withstand repeated attempts at falsification.

At first glance, p-values seem to fit Popper’s ideas like a glove. What
would a rejected null hypothesis be other than a falsification of something?
Meehl recognized a severe limitation that p-values have, especially in the
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soft sciences. Although Meehl’s argument leans on Popper, it remains inde-
pendently relevant today. To make the argument, Meehl invokes Popper’s
principle of falsification (modus tollens):

* Suppose theory T implies a falsifiable condition C.
e If we can show that C is false, we refute T.

The gist of Meehl’s argument is that any theory usually only implies an
observable condition if additional auxiliary conditions hold. These auxiliary
conditions include assumptions that specific lab conditions are met, that
various measurement devices work as intended, that subjects weren’t primed,
biased or poorly chosen, and so forth.

Put more formally, in the empirical sciences we always have implications
of the form (T A A) — C, where A is a sequence of assumptions. If the theory
is true and the auxiliary conditions hold, we get a falsifiable prediction C.

Logically, if we refute C, we just get the proposition =T V —A, that is, either
the theory failed or the auxiliary conditions failed (or both). Meehl argues
that, therefore, null hypothesis tests in the soft sciences rarely execute a
successful modus tollens against the theory. Rather we end up wondering if
we perhaps only invalidated the auxiliary conditions that the test relies on.
A scientist who declares a theory refuted from a rejected null hypothesis
might’ve just discovered a quirk in the experiment. This, at least, is a
simplified account of Meehl’s deeper argument.

Researcher degrees of freedom

In 2011, Simmons, Nelson, and Simonsohn wrote an article called False-
Positive Psychology: Undisclosed Flexibility in Data Collection and Analysis
Allows Presenting Anything as Significant that would shape the conversation
about the replication crisis. The trio claimed:

In fact, it is unacceptably easy to publish “statistically signifi-
cant” evidence consistent with any hypothesis. The culprit is a
construct we refer to as researcher degrees of freedom.’

Researcher degrees of freedom refers to the many choices a researcher
makes—often subconsciously or on autopilot—during the routine research
process that can lead to false positive findings.

To give an example, imagine a treatment that you suspect from your
domain knowledge works best within a certain demographic. So you choose
to run an experiment in a city that matches the demographic you have in
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mind. You include variables you think are relevant, while excluding a whole
slew of variables you could’ve included. The inclusion and exclusion may
be based on prior interactions with the data, or it may happen in your head.
You set out to run an experiment for three months. But the numbers look
good after two months, so you stop early. Once you have the data, you
do exploratory data analysis to see what’s going on. You realize that one
column is particularly noisy, and so you drop it. Other columns need to
be normalized in certain ways and the data suggest a good way of doing it.
Finally, you run a few different statistical methods to see which works best.

Each of these is an example of researcher degrees of freedom. Many of
them may end up being undisclosed and unaccounted for in the final paper.

Researcher degrees of freedom often blur into accusations of p-hacking—
tweaking statistical analyses until a significant p-value pops. Fishing, cherry
picking, data dredging, HARKing (“Hypothesizing After the Results are Known”)
are a few other common slurs with similar meanings. These terms portray a
motivated scientist who does whatever questionable practice it takes to clear
the publication bar.

One way to avoid p-hacking is pre-registration. Pre-registration requires
that you fully and precisely specify the exact experimental design, data
collection procedure, and statistical analysis ahead of time. You publicly
commit to a pre-registration plan—there are services, such as the Open
Science Framework, to do so. Reviewers can then check if you stuck to the
plan. Pre-registration is increasingly common in many scientific fields. The
Open Science Framework surpassed 100,000 registrations in 2022.°

Not long after writing false positive psychology, the trio founded a blog,
Data Colada, devoted to the replication crisis. The blog has since covered
numerous high profile retractions of scientific papers. Several of them
include instances of fraud.

But fraud is likely not primary driver of the scientific crisis, and it’s not the
problem we’re concerned with here. The focus is on how science succeeds or
fails under normal behavior. Competition among researchers, for example,
is normal behavior. Researchers, being sensitive to incentives, find creative
ways to navigate the system. Scientists are not exempt from human cognitive
and behavioral biases. Confirmation bias—the inclination to see what you
believe is true—is particularly common among scientists.
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Garden of the forking paths

Terms like p-hacking have a decidedly negative connotation that borders on
an accusation of fraud.

But trying out multiple things is not wrong so long as we correctly adjust
for it. Multiple hypothesis testing is a venerable field of statistics devoted
to the problem. The most basic correction from the theory of multiple hy-
pothesis testing is called Bonferroni correction. It says that if you compute k
statistics on a dataset, each giving you a p-value, then you need to multiply
each p-value by the factor k. So, the value p goes to kp. Only if kp < 0.05 can
you claim that you meet the 0.05 significance level. Formally, Bonferroni is
just the union bound. Remember that p-values are tail probabilities. So, to
bound the probability that not a single one out of k deviations is large, the
union bound suggests that you multiply the tails by a factor k.

Disappointed? You're not alone. Researchers love to avoid Bonferroni for
the obvious reason that it makes p-values quite a bit larger. There are more
sophisticated adjustments, like the Benjamini-Hochberg procedure, that can
provide some relief. However, the basic fact remains: Adjusting for multiple
comparisons is painful.

Yet, there is a bigger problem, still. In most cases, it’s hard to even say
what the actual number of comparisons was. Keep in mind that an adaptive
analyst (Chapter 5) making k data-dependent comparisons spans a tree of 2%
possible comparisons. These possibilities are so-called implicit comparisons.
They happen, but you don’t see them. Still you should adjust for them and
that would often entail a huge penalty on your p-values.

In the context of the replication crisis, Gelman and Loken’ drew attention
this problem they called garden of the forking paths:

Our main point in the present article is that it is possible to have
multiple potential comparisons (that is, a data analysis whose
details are highly contingent on data, invalidating published
p-values) without the researcher performing any conscious proce-
dure of fishing through the data or explicitly examining multiple
comparisons.’

Gelman and Loken argue that science is fundamentally adaptive. Many
design choices are data dependent. We simply don’t know exactly what
to do ahead of time. What data to include or exclude, how to clean data,
how to filter data, these practices may not feel like “fishing” or “hacking” to
researchers.
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By design, pre-registration forces the analysis to be non-adaptive, depriv-
ing researchers of their degrees of freedom, and eliminating the possibility
of implicit comparisons. It’s often safe, but is it too constraining? Gelman
and Loken argue:

At the same time, we do not want demands of statistical purity
to strait-jacket our science. The most valuable statistical analyses
often arise only after an iterative process involving the data (see,
e.g., Tukey, 1980, and Box, 1997).9

This quote nods to the prominent statisticians John Tukey and George Box
who both advocated for what we called adaptivity in the previous chapter,
i.e., allowing for flexibility and iterative progress in statistical practice.'%!!
Incremental improvements are important.

The last point resonates with machine learning practice. The idea of pre-
registration is a non-starter in machine learning, where incremental dataset
reuse is at the core of all practice. Researcher degrees of freedom are a
key culprit of the crisis and machine learning has no way to limit them.
Shouldn’t we then expect a replication crisis in machine learning research,
too? This is the topic of the next chapter.

Goodhart’s law

Abstractly speaking, p-values are statistics that serve a control purpose. Aca-
demic communities use them to aid consequential decisions about which
papers get accepted into prestigious journals. Such decisions in turn influ-
ence who gets desirable jobs, grants, and access to opportunities in academia.
As a result, academics inevitably put competitive pressure on p-values in
the sense that all the incentives point toward getting smaller p-values, and
especially crossing the 0.05 threshold. Academics are resourceful and will
do what it takes, typically within the parameters of ethical conduct, to cross
the threshold.

In 1984, macroeconomist Charles Goodhart warned:

Any observed statistical regularity will tend to collapse once
pressure is placed upon it for control purposes. '?

The warning has since become an empirical law named after Goodhart.
Once you use a statistical criterion as a decision threshold, be it for financial
regulation, government benefits, college admissions, or journal acceptance,
people will change their behavior so as to cross the threshold. What follows
is that the statistical regularities you previously observed will change.

12
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Figure 6.3: Goodhart’s law in the statistical sciences: p-values cluster just
below 0.05. Source: De Winter and Dodou (2015)

This change in behavior is often denounced as gaming the threshold, but
it may also include sincere attempts to meet the requirements. Either way,
whatever statistical patterns held before break down as a result of this change
in behavior.

Goodhart’s law has a beautifully simple empirical test: Check for a dis-
continuity in the statistic around the decision threshold. Goodhart’s law
predicts that a discontinuity exist due to the competitive pressure to cross
the threshold. As a result we would expect too much probability mass just
above or below the threshold depending on which case is desirable.

As predicted, p-values exhibit such a discontinuity just around 0.05. But
there’s nothing special about p-values here. Goodhart’s law predicts that any
statistic will meet the same fate as p-values. Indeed, the literature is littered
with good examples of Goodhart’s law.

There is no reason to believe that Goodhart’s law wouldn’t apply to accuracy
on ImageNet and other benchmark numbers. If we take improvements in
benchmark performance as a criterion for paper acceptance, we are using a
statistic for control purposes. The law applies.

13
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6.4 Notes

Historical background. The methodological debate about hypothesis test-
ing in statistics is about a century old. Gigerenzer et al.'® discuss the early
historical divide between Fisherian and Neyman-Pearson style hypothesis
testing and argue that modern statistics, particularly in psychology and the
social sciences, often conflates these two approaches into a hybrid model
that lacks coherence. This hybridization—where researchers calculate p-
values (Fisherian) but also interpret them in terms of rejecting or accepting
hypotheses (Neyman-Pearson)—leads to misunderstandings and misuse of
statistical methods. In a 1945 article that remains relevant, Herb Simon
argued that binary hypothesis tests are a poor basis for decision making and
advocated for a more comprehensive decision making framework. '*

Critiques of p-values were plentiful already more than half a century
ago. A book called The Significance Test Controversy: A Reader, edited in
1970, contains thirty articles that almost all condemn the practice of null
hypothesis testing.!> Contained in the collection is Meehl’s 1967 article
on theory-testing'° that predates his 1978 tabular asterisks'”. There’s more
Meehl wrote on the topic. See, for example, his 1997 book chapter The
problem is epistemology, not statistics: Replace significance tests by confidence
intervals and quantify accuracy of risky numerical predictions.'® The chapter
gives an updated view of his argument.

For additional historical background and references, see Cohen’s 1994
polemic The earth is round (p <.05).

Perspectives on the crisis. The statistical replication crisis has been cov-
ered extensively. Apart from the articles by Ioannidis'?, Simmons, Nelson,
Simonsohn’, and Gelman and Loken?, that I covered above, there are many
other high-level perspectives. See, for example, Stark’s Cargo-cult statis-
tics and scientific crisis.’’ Ioannidis provides additional retrospective and
commentary in his 2019 article.?!

Statistical methodology in the sciences has been thoroughly scrutinized
and critiqued in numerous papers. Greenland et al. (2016) thoroughly
discuss the widespread misinterpretation of of statistical tests, confidence
intervals, and statistical power, arguing that these statistics require high
cognitive demands from scientists.?” In a 2016 statement on behalf of the
American Statistical Association (ASA), Wasserstein and Lazar acknowledge
that the misuse of p-values and the overreliance on the “p < 0.05” threshold
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have led to widespread misinterpretations of statistical significance.® Ben-
jamin et al. (2018) propose requiring p < 0.005 as the default cutoff for new
discoveries.?* Amrhein, Greenland, and McShane call for abandoning the
concept of statistical significance entirely, suggesting that researchers should
focus on effect sizes, uncertainty intervals, and scientific reasoning instead
of binary p-value thresholds. > In particular, they argue that more than half
of surveyed scientists misinterpret large p-values as no effect. Pashler and
Harris ask Is the replicability crisis overblown? >

Meta studies and empirical findings. On the topic of publication bias,
Fanelli showed that the proportion of papers reporting null or negative
results has been decreasing over time across most disciplines and coun-
tries, implying a publication bias toward positive results in the scientific
literature.?” Franco, Malhotra, and Simonovits tracked 221 social science
experiments from design to publication and found that null findings are
rarely published or are distorted as significant, empirically confirming the
“file drawer” problem of unpublished null results.”® Head et al. estimated
the extent and consequences of p-hacking in science through textual analysis
of scientific papers.’? More broadly, John, Loewenstein, and Prelec survey
over 2,000 psychologists and find a prevalence of questionable research
practices, such as selective outcome reporting and data peeking.’" Begley
and Ellis (2012) discuss the replication crisis in cancer research, state that
biotechnology firm Amgen succeeded in replicating published findings only
in 11% of the cases."!

Goodhart’s law has been studied in the context of machine learning in the
area called strategic classification.>” There are numerous reported instances
of Goodhart’s law in various real-world policy problems. In particular, many
papers have demonstrated and analyzed the discontinuity of p-values in
different settings.””~” The discontinuity is not necessarily a sign of false
positive findings. A contributing factor is also the file drawer effect that
researchers don’t attempt to publish papers without significant findings.*®

On the topic of replication, I highlighted the Open Science Collaboration
above that attempted to replicate 100 published psychology results.' I plot-
ted the replication figure from the updated dataset available at osf.io/yt3gq
(last modified: September 28, 2023). It is similar but not identical to the
main figure of the original Science paper from 2015.

There are several other important replication studies. For example, Camerer
et al. replicate 18 economics laboratory experiments published in top jour-
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nals and find that 11 (61%) replicate successfully in the same direction,
suggesting that many economic findings are robust but a substantial share
fail to replicate.>” In another study, Camerer et al. conduct replications of
21 high-profile social science experiments originally published in Nature or
Science between 2010 and 2015 and find that 13 replications (62%) succeed,
with replication effect sizes about half the magnitude of the originals on aver-
age.40 In another meta study, loannidis, Stanley, and Doucouliagos analyzed
64,076 effect size estimates from 159 economics studies and found median
statistical power around 18%, with roughly 80% of reported effects exagger-
ated, highlighting publication bias and low replicability in economics.*' A
major effort to replicate Brazilian biomedical research found that fewer than
half of the experiments replicated. *’

Proposals for scientific reform. There have been many calls for scien-
tific reform. Munafo et al. issue a broad manifesto for reproducible science
outlining steps to improve research reliability, including preregistration
of studies, open sharing of data and code, routine replication, and incen-
tive reforms to address the causes of irreproducible results.*> Miguel et
al. advocate for transparency in social science by adopting practices such as
pre-analysis plans, open data, and replication studies (similar to medical
trial standards), aiming to realign researchers’ incentives with producing
credible, reproducible results.** Kasy writes about the problem in the con-
text of economics.*> Andrews and Kasy propose a method for identifying
and correcting for publication bias.*°

In a popular audience book on the replication crisis, Clayton’s Bernoulli’s
fallacy: Statistical illogic and the crisis of modern science makes the case for
Bayesian reasoning to counter the crisis. Many have called for a shift to
Bayesian methods along similar lines. Others have pointed out that Bayesian
methods aren’t immune to the analog of p-hacking.*’
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