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Replication in machine learning

The preconditions for crisis exist in machine learning, too. And
yet, the situation in machine learning is different. While ac-
curacy numbers don’t replicate, model rankings replicate to a
significant degree.
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The previous chapter covered the replication crisis in the statistical sci-
ences. Researcher degrees of freedom is one major culprit, especially in light
of Goodhart’s law. Researchers can always find creative, sometimes ques-
tionable ways around the statistical guardrails of the scientific publication
process.

If statistical sciences broadly face a replication crisis, what does this imply
for machine learning? In this chapter, we examine the empirical reality of
replication in machine learning research.

7.1 The preconditions for crisis

The preconditions for crisis surely exist in machine learning as well. You
might even argue they are stronger in some significant ways.

To say that machine learning research has a culture of rapid publication is
an understatement; the community produces an unfathomable volume of
papers each year. For example, the paper that invented residual networks
picked up a quarter million citations in the last five years. The paper that
introduced transformers raked in around 55000 citations in 2024 alone. Both
papers presented marvelous inventions worthy of the fame, but who can
read a quarter million papers?

Peer review has long struggled to keep up with the relentless onslaught of
new papers. The field’s largest conference, Neural Information Processing
Systems (abbreviated NeurIPS), received around 16,000 paper submissions
in 2024; a hierarchy of around 100 senior area chairs, 1000 area chairs, and
well over 10000 reviewers are tasked with sorting out peer review.

The pressure on peer review was already apparent in 2014 when—at
just around 1600 submissions—NeurIPS was still small compared with the
behemoth that it’s since grown into. In the NeurIPS experiment of 2014, the
program chairs Corinna Cortes and Neil Lawrence randomly assigned 166
papers (or 10% of the submissions) to two independent reviewer panels.
What they found is striking, although perhaps not surprising to some: Of the
papers accepted by one of the panels, only about half of them would’ve been
accepted by the other committee.! This was early experimental evidence of
what has since become a widespread belief among researchers and a source
of consolation after rejection notifications: The outcome of peer review
is rather random. The NeurIPS experiment was a brilliant idea that has
since inspired much valuable experimentation with peer review, aimed at
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improving the process.

Even if peer review were a lot more thorough than it is, there’s only so
much it can do. Machine learning embraces an extreme level of researcher
degrees of freedom. It’s the anything goes principle that’s non-negotiable
in the field. Researchers are unconstrained by statistical rigor or protocol.
In particular, there is no preregistration or similar mechanisms whatsoever.
The mere idea of trying to do something like preregistration doesn’t compile.
It would require a complete rewiring of how the community works. Progress
in machine learning is by choice highly incremental and adaptive in its
nature. Popular test sets, like CIFAR-10 and ImageNet, have easily been used
millions of times in data-dependent ways.

The only methodological commitment in the community is to report eval-
uations on shared test sets. But why should the average value of a loss
function on a test set be any more reliable than a p-value? Both are statistics
computed on a sample, to which Goodhart’s law would seem to apply in
the same way. In this sense, machine learning shares an Achilles heel with
statistics. Moreover, whereas datasets in the empirical sciences are typically
sampled specifically for a study, machine learning test sets sit on the internet
for everyone to use freely.

As a result of these factors, many have worried about a major scientific
crisis lurking in the shadows of machine learning research. Indeed, a 2018
article in Science proclaimed exactly that.” Nevertheless, we will see that
the situation in machine learning is in some important ways different than
in other fields. Toward developing this point, it’s helpful to draw some
distinctions about the different standards of replication.

7.2 Replication in machine learning

A minimal bar of replication is code re-execution. This means that you can
download and run the code linked to from a paper. If the dataset is public,
this means that with some reasonable amount of elbow grease you can re-
execute the experiments from the paper and reproduce the claims and plots
in the paper. Reproducibility is replication in essentially identical conditions.
Other than the hardware used to run the experiment, nothing has changed.

Code re-execution standards have benefited in the last ten years from the
impressive open source software ecosystem that’s grown around machine
learning. It’s marvelous how simple it is to clone and run code these days
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compared to what it was even ten years ago. The contributions of thousands
of open source developers have undoubtedly transformed machine learning
for the better.

That said, the state of reproducibility is far from perfect. In 2019, NeurIPS
ran a reproducibility challenge, where researchers volunteered to reproduce
the findings of machine learning papers. Volunteers claimed 173 papers for
reproduction and documented the results of their efforts in public reports.
These reports make it clear that reproducibility isn’t a binary. Reproduction
requires some varying amount of skill and effort. But most findings do seem
to at least reproduce with effort.

Code re-execution is also an important bar to insist on, since it incentivizes
open science. For re-execution to work, the data, the model, and the code
have to be available. The rise of proprietary models in the language model
era threatens the minimal bar of code re-execution. Academics shouldn’t
give up on it.

Rapid re-execution is an important goal for the scientific community, but
it’s necessarily only a minimal bar of scientific replication. Code re-execution
says very little about the scientific validity of claims in a paper. A result
wouldn’t be interesting if it held only under one specific set of conditions.
When scientists say ResNet-152 is better than Inception V3 on ImageNet,
they don’t mean to say that this comparison holds only on one specific set
of 50,000 test points and nowhere else. We expect the claim to be true
somewhat more robustly at least.

A stronger bar to clear is replication in similar conditions. Here, we ask
that claims are robust under minor variations in experimental conditions. In
machine learning work, it’s reasonable to ask that things replicate if you were
to draw a fresh dataset from the same population. This kind of replication
rules out that your model is good on only one sample. Theoretically, this
is reasonably well captured by generalization under repeated sampling. In
practice, resampling isn’t so easy. It’s hard to draw a new sample from the
same population. Think back to Chapter 2, where we saw that populations
change over time and rarely are completely stationary. The most we can
do is try our best to recreate a new test set using the exact same steps as in
the original creation procedure. Sometimes we get lucky and at the time
of creation there were additional data points set aside and forgotten that
haven’t been used as a test set before. This was the case with the MNIST
lost digits®>—more later! A prudent practitioner might also set aside an
extra secret test set at the time of benchmark creation for use in a future
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replication study. But if the new test set is created retroactively, it will be at
least a bit different from the original one.

Call this evidentiary bar of replication under similar conditions internal
validity. Internal validity says that a claim is valid within a given setup
and a fixed target population, e.g., ImageNet. Internal validity is a reason-
able yardstick for good machine learning work. However, internal validity
says nothing about how well a model developed in one setting might work
elsewhere.

An even stronger bar to consider is that claims replicate in different con-
ditions. Call this external validity. The claim stands even if the population
changes. Applying a model to a different population almost always entails
some necessary changes to the code, and some amount of engineering effort
to get the code to run on the new setup. We'll apply this criterion within
reason. After all, no machine learning method performs well everywhere.
But external validity asks for more than just replication under resampling.

As we already touched on in Chapter 4, pinning down formal definitions
of internal and external validity is challenging, as the concepts vary from one
context to another and run into epistemological debates. We avoid a deeper
philosophical discussion by taking a pragmatic route: Internal validity is
about generalization to more of the same population. External validity is
about generalization to different populations.

7.3  The trouble with absolute benchmark numbers

Imagine playing a fun little game for computer vision researchers: Given
an image, classify which vision benchmark it comes from. This game is the
starting point for the 2011 paper An unbiased look at dataset bias by Torralba
and Efros.* Anecdotal evidence suggests that experts are actually pretty
good at the game. Moreover, models trained on the classification task got
high accuracy on the kind of benchmarks that would appear in computer
vision papers in 2011. Even current computer vision benchmarks are still
easy to tell apart. State-of-the-art vision models achieve 80%+ accuracy in a
three way classification task involving three recent datasets all based on web
crawled images.>°

The fact that benchmark prediction is easy is a sign of dataset biases that
identify each benchmark like a fingerprint. These biases include selection
and filtering biases, capture biases (how an image is taken), and annotator
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biases (how labels are assigned). No two ways of assembling a dataset are
ever quite the same. A consequence of the resulting idiosyncrasies is that
classifiers trained on one dataset generalize poorly to any other dataset. The
accuracy drops when moving from one benchmark to another are typically
in the double digits.

There’s another corollary to the observation. Since all benchmarks are easy
to tell apart, it can’t be the case that two of them both reflect the visual world.
Torralba and Efros contend that datasets are all trying to capture the same
domain, the visual world. But apparently they don’t succeed. All datasets
are pretty far from whatever demands the real world poses. There’s another
way to look at this corollary. If benchmarks are useful, this must mean that a
benchmark can be a useful benchmark without representing the real world.

By the way, a lesser known part of the paper proposes a market perspective
on measuring dataset value. The question is: How many data points from
one benchmark would you exchange for a single data point from another?
This defines a kind of exchange rate between datasets, and by extension
gives us a way to talk about the value of a dataset.

Torralba and Efros launched a new field of study. Their key findings about
accuracy drops have since been confirmed in hundreds of papers. Accuracy
numbers change even with slight changes to the population. The problem
they brought attention to now often falls under the umbrella of distribution
shift. Distribution shift is a catch all for situations where model performance
changes from one dataset to another.

Changing populations

Torralba and Efros demonstrated that model performance can drop sharply
from one dataset to the other. While they considered fairly different com-
puter vision benchmarks, the same is still true even if we move between
seemingly very similar distributions.

Whoever first deployed a model on an online platform must’ve quickly
learned that performance in the real world degrades over time. A recom-
mender system trained on a week of clicks in January will have likely gotten
much worse by February. But not only time degrades model performance.
Small transformations like object rotations, partial occlusions, or image
artifacts can significantly deteriorate the accuracy of a vision model. Style
changes, grammatical transformation, and different prompts can throw off
language models.
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Distribution shift or dataset shift refers to differences in the distribution
on which a model was trained and the distribution on which it is tested. The
word makes most sense in cases where we expect the distributions to be
morally similar. You wouldn’t call the difference between any two arbitrary
distributions shift. When people say distribution shift, there’s an underlying
assumption that the two distributions should’ve been close in some intuitive
sense.

A mathematical fact says that if two distributions are close in total variation
distance, then model performance must also be close on the two distribu-
tions. This follows from the material in Chapter 2: Total variation distance
bounds the difference of any bounded loss function on the two distributions.
Unfortunately, two naturally occurring distributions are rarely close in total
variation distance. If you were to take pictures with two different cameras—
each filtering and encoding an image differently—the resulting distributions
would almost certainly be far in total variation distance.

Machine learning excels at exploiting dataset artifacts. Whatever signal
there is in the data, large enough models will use it for better predictions.
Hundreds of papers have documented the fragility of machine learning
models under distribution shift.

If distribution shift is a problem, what is the solution?

Researchers have actively studied this problem for decades. Domain adap-
tation refers to the challenge of training a model on one data distribution (the
source domain) and applying it to another distribution (the target domain),
typically under the assumption that the task remains the same. Usually,
you have some data from the target domain, although it may be unlabeled.
Domain adaptation is one of the tools for mitigating distribution shift. A
closely related problem is domain generalization, where the goal is to train
models on multiple source domains to improve generalization to an unseen
target domain, without any target data available during training.

More broadly, transfer learning is a bag of techniques to use models from
one domain to improve learning in another. Unlike domain adaptation,
transfer learning may involve different tasks across domains. A common
case of transfer learning is to take a deep neural net trained on ImageNet,
remove its final classification layer, add a different classification layer on
top, and fine-tune the last layer on a new dataset. ImageNet turned out to
be quite useful for this kind of transfer learning.

There are also benchmarks for domain generalization and testing model
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performance across distribution shifts. For example, DomainBed tests the
ability of models to generalize to new domains. DomainBed contains simple
variants of basic benchmarks, such as Colored MNIST, or Rotated MNIST.”
WILDS is a curated collection of 10 datasets that aim to capture real-world
distribution shifts, for example, variation in location and time of satellite
imaging data.®

There are two primary findings from these benchmarks:

1. Methods specifically designed for domain generalization or robustness
to distribution shift do not consistently outperform empirical risk
minimization. What works best is the kitchen sink approach: Train the
best model you can on all the data you have and hope for the best.

2. Accuracy numbers, and by extension absolute benchmark metrics,
don’t have external validity. They change sharply under dataset varia-
tion.

The first finding is an instance of Sutton’s bitter lesson:” Building bigger
models on more data usually beats clever algorithm design. Although it’s
not our main focus in this chapter, the bitter lesson is an interesting meta
fact about machine learning that has long contributed to the importance of
empirical testing in the field.

The second finding is more directly about replication. Accuracy numbers
evidently do not satisfy external validity. They are best interpreted literally:
On this specific dataset, the model makes so many errors. We know from Ho-
effding’s bound that they satisfy the most narrow interpretation of internal
validity. If we sample twice from the exact same distribution, the numbers
are close up to statistical error. But we don’t seem to get much more than
this.

There are fundamental reasons why absolute accuracy numbers don’t mean
much on their own. Take any benchmark of your choice and replace 20% of
the labels with randomly drawn labels from the set of C classes. The new
benchmark is for all intents and purposes operationally equivalent. It gives
you all the same model comparisons. Up to small statistical fluctuations,
leaderboard climbing works the same way. However, an accuracy number A
on the original benchmarks maps to 0.8A + 0.2/C on the new benchmark.
Benchmarks may be “harder” or “easier” in terms of accuracy numbers,
while being equivalent benchmarks. Accuracy numbers without additional
context or domain knowledge therefore can’t say much. Of course, labels
aren’t completely random in real benchmarks, but the same situation arises
naturally when using annotation sources of varying quality. This can strongly
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affect accuracy, but may not impact model comparisons as we explore further
in Chapter 9.

7.4 Model rankings in the ImageNet era

ImageNet is best known as the benchmark that kicked off the deep learning
revolution during the decade following 2012. When people say ImageNet,
they usually refer to the dataset that was released for the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) in 2012. The competition was
organized yearly from 2010 until 2017 to measure progress in computer
vision. !V

In 2012, a deep convolutional neural network called AlexNet achieved
top-5 error 15.3% on the ILSVRC-2012 dataset, vastly outperforming the
second best contender that came in at 26.2%.'! Created by Krizhevsky,
Sutskever, and Hinton, effectively using GPU hardware, the model that beat
the competition demonstrated that end-to-end trained convolutional neural
networks were the way to go for computer vision. The competition heated
up quite a bit over the years to follow.

Around 2015, major companies like Google, Microsoft, and Baidu had
deep learning teams working on taking first place. It was the first time the
rivalry between the United States and China over Al development played
out in such a public manner. In a now largely forgotten controversy, Baidu
allegedly made too many queries to the test set to gain an advantage in
the competition. The ILSVRC organizers disqualified Baidu from the 2015
competition and banned the company from competing in the 2016 rendition.
Microsoft went on to win the 2015 competition with Kaiming He’s deep
residual networks (ResNets), getting the top-5 error down to 3.57%. ResNets
were here to stay and would become one of the crown jewels of the ImageNet
era.

The ILSVRC-2012 data features roughly 1.3 million labeled images from
1000 different classes. The test size contains 50000 instances, that means
only 50 per class. It’s a fairly idiosyncratic dataset. Of the 1,000 classes
in ILSVRC-2012, just three are about people: groom, baseball player, and
scuba diver. On the other hand, there 118 are dog breeds. The reasons for
these choices aren’t entirely clear, though they reflect the field’s focus at the
time on handling fine-grained classification tasks. Although ILSVRC-2012
is kind of quirky, researchers learned that representations trained on the
dataset make good features for other tasks.


https://mlbenchmarks.org

100

Meta Pseudo Labels (EfficientNet=L2)

90
FixResNeXt-101 32x48d

C SimpleNetV1-9m-carrnectslabels
< 30 Inception V3
) VGG
@]
(@]
<
o 70
% OverFeat
= Alexnet

60

50

2012 2014 2016 2018 2020 2022 2024
Other models State-of-the-art models

Figure 7.1: The ILSVRC2012 test set supported over a decade of active model
development according to PapersWithCode

Long after the official competition was over, the academic leaderboard
on ImageNet remained the central benchmark in the field. When attention
eventually moved elsewhere in 2022, ILSVRC-2012 had supported over a
decade of intense model development.

The competition dataset is only a small part of the larger ImageNet
database that is a vast collection of millions of human-annotated images.
The class labels come from WordNet, a database of English nouns grouped
into synonyms, or synsets. For instance, car and automobile belong to the
same synset. WordNet also arranges these synsets into a hierarchy: chair
falls under furniture, for example. WordNet existed before ImageNet and
partly inspired its creation. Scale was an important aspect of ImageNet
from the get go. Introduced in 2009 by Fei-Fei Li and her team at Princeton
University, the first version of ImageNet contained around 5,000 synsets
with an average of 600 images per category.'” By 2011, ImageNet had grown
to 32,000 categories.
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ImageNet creation

Building ImageNet involved two key components: gathering candidate im-
ages for each class and using gig workers to label them. For the first step,
creators used image search engines like Flickr. For labeling, they turned to
Amazon’s Mechanical Turk (MTurk), an online labor market where workers
reviewed images and decided whether they matched the assigned category.
It’s worth taking a closer look at the ImageNet creation process. Annotating
millions of images efficiently was a daunting test, carried out in roughly four
steps:

1. Candidate set creation: For each synset noun, create a set of candidate
images by searching for the noun on image search engines.

2. Present MTurk workers with a grid of candidate images for each class.
Let them select the ones they think belong to the class.

3. Retain all images above a certain selection frequency corresponding to
the fraction of turkers choosing each image for inclusion.

4. Remove near duplicates.

Note that workers didn’t just label random images on the internet. They
labeled images that were already selected as candidates. To be more precise,
they didn’t label them in the sense of coming up with a description or
class name themselves. Workers confirmed if a candidate image belonged
to a candidate category. Candidate images were then selected based on
annotator agreement. This double selection process is what gives ImageNet
its characteristic look.'? Images typically represent the category front and
center. Due to the many similar classes of dog breeds, however, the dataset
is relatively hard for untrained human observers.

ImageNet test set replication

The intense use and competitive pressure that ImageNet experienced over
the course of a decade begs a question: Can we trust the reported progress
on ImageNet? Or did researchers led themselves astray by overfitting to
ImageNet.

To gain insight into this question, researchers carefully created a new
test set for ImageNet by re-executing the dataset creation process for the
CIFAR-10 and ImageNet ILSVRC 2012 test sets.'* With the new test sets at
hand, the team of researchers evaluated a slew of ImageNet era models on
the new test instances.

The two primary findings were:

11
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Figure 7.2: Scatter plot of model accuracies on the original test sets vs. new
test sets for CIFAR-10 and ImageNet. Each data point corresponds to one
model from a set of representative models. Source: Recht, Roelofs, Schmidt,
Shankar (2019)

1. Accuracy numbers drop significantly between the old and the new test
set.

2. Model rankings are largely preserved.

Even though the researchers took care to create a dataset in the same way
that ImageNet ILSVRC 2012 came about, the differences were stark enough
to cause accuracy numbers to drop sharply. This confirms that accuracy
numbers don’t even replicate under a serious attempt to sample from the
same distribution twice.

The findings are best summarized in a scatter plot that shows for each
model its performance on the old test set (on the x-axis) versus the new test
set (on the y-axis). The main diagonal corresponds to equal performance.
Points below the line perform worse on the new test set than the old one.
We’ve seen such a scatter plot before at the beginning of Chapter 6, where

we looked at replication efforts on psychology papers. This one looks quite
different.

The scatter plot has a curious property: Models seem to cluster around
a line. In fact, this on the line phenomenon appears in many different con-
texts. !> It is not limited to test set reconstructions, but appears more gener-
ally when models trained on one distribution are evaluated in another. One
important caveat is that models must all be trained on the same training

12


https://mlbenchmarks.org

data. The phenomenon breaks down if models were trained on different
datasets.

The slope of the line fit has interesting implications:

* Slope > 0: The highest accuracy model on old data is also highest
accuracy on new data. The relationship between in and out of do-
main accuracy is strictly monotone. This means model rankings are
preserved!

 Slope > 1: The higher the model accuracy, the less it accuracy drops on
the new domain.

A positive slope occurs in almost all cases. This makes a powerful case
for the external validity of model rankings. Whenever the on the line phe-
nomenon occurs with a positively sloped line, model rankings must be
preserved. Any monotone relationship imply the same. It so happens to be a
line of positive slope.

The meaning of a slope greater than 1 is a bit more subtle. It doesn’t
always happen, but the slope for ImageNet is just a bit larger than one. A
line of slope greater than one is evidence against adaptive overfitting. It
means that newer models—that achieve higher accuracy and had more time
to overfit—show a smaller difference between old and new test accuracy.

In a similar study, Yadav and Bottou’s Cold Case: The Lost MNIST Digits
revisited the MNIST digits benchmark by recovering and testing on previ-
ously discarded samples from the original NIST dataset used to construct
MNIST.? It’s hard to imagine a benchmark that’s considered more overused
than MNIST. Researchers have long considered MNIST a solved problem
that is now little more than a “unit test” to see if software runs. Neverthe-
less, the scatter plot for the lost digits has the same positively sloped linear
trend as for CIFAR and ImageNet. In particular, model rankings are roughly
preserved.

To give one more example, a similar observation is true for Kaggle competi-
tions. In a meta study of numerous Kaggle competitions, scores on the public
leaderboard exhibited a strong positive correlation with scores on the private
leaderboard. Participants in Kaggle competitions routinely worry about
overfitting to the public leaderboard. Problems with competitions certainly
occur. But these problems generally seem to be more about failures with
the competition setup—data splits, target variable definition, loss functions,
etc.—than with overfitting to the leaderboard.

What has emerged from these empirical findings is a certain internal va-

13
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lidity of iron rule: Competitive testing yields model rankings that routinely
replicate in sufficiently similar conditions.

ImageNot and external validity

We can go a step further and ask if model rankings transfer from ImageNet to
other datasets. The answer turns out to be, yes, again. Kornblith, Shlens, and
Le'® showed that progress on ImageNet transfers to other computer vision
benchmarks, such as CIFAR-10 and CIFAR-100, Pascal Visual Object Classes
(VOC) benchmark, SUN397, and Caltech-101. Models transfer particularly
well when trained on ImageNet and fine-tuned on other datasets. But even
training from scratch yields a positive correlation between ImageNet accu-
racy and accuracy on other datasets.

In another test of external validity, researchers created ObjectNet”, an

object detection benchmark consisting of 50000 carefully selected test im-
ages. Like ImageNet, the images show an object front and center, but unlike
ImageNet the images feature transformations like rotations, occlusions, and
variations in lighting. This results in a large accuracy drop going from
ImageNet to ObjectNet. Still, the model rankings are preserved.

On further thought, you might register an objection. These datasets are
still all alike in one important characteristic. These were all reasonable
computer vision benchmarks, carefully created by experts. Perhaps things
break down on a less reasonable, less curated dataset.

To test this possibility, researchers created a toy dataset called ImageNot
that matches the scale and class diversity of ImageNet but differs in every
other regard. Whereas ImageNet was carefully curated with multiple annota-
tors per image, ImageNot is based on a quick and dirty web crawl. ImageNot
is not only a test set, but comes with one million training points matching
the size of the ImageNet ILSVRC 2012 training set.

In some more detail, the steps in creating ImageNot were:

1. Pick 1000 arbitrary classes while avoiding all ImageNet synsets in the
WordNet hierarchy.

2. Images come from the LAION-5B image database that features nearly
six billion image-caption pairs crawled from the internet. Select im-
ages based on the similarity between the class name and the caption,
according to a RoBERTa text embedding.

3. Implement some additional safety filters.

Importantly, no annotators filtered the images or cleaned the labels. As a

14
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Figure 7.3: Model rankings are preserved between ImageNet and ImageNot

result, the images in ImageNot are all over the place.

Retraining several key ImageNet era model architectures on ImageNot
reveals that the model rankings are preserved. The model rankings on
ImageNet and ImageNot turn out to be exactly the same: 1. EfficientNet '®
(2019), 2. ConvNeXt'? (2022), 3. ViT-B-16 Vision Transformers?’ (2020),
4. Residual Networks?! (2016), 5. Inception V322 (2015), 6. DenseNet 2>
(2017), 7. MobileNet V3 Large’* (2019), 8. VGG?> (2014), 9. AlexNet'!
(2012).

What'’s perhaps more striking is that the relative improvement from one
model to the next are also roughly the same. This adds a quantitative
dimension to the stability of model rankings. Relative improvements from
one model to the next also replicate.

The surprising transfer ability of model rankings and relative improve-
ments suggests that there is a certain external validity of the iron rule: If you
beat the previous best under sufficiently general conditions, it will likely
replicate elsewhere. The ImageNot experiment tests how far we can stretch
the external validity of model rankings. But apart from running such em-
pirical tests, there is little we know about the external validity of model
rankings.
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Figure 7.4: Relative accuracy improvements from model to the next are
approximately the same on ImageNet and ImageNot.

7.5 Conclusion

The statistical scientific crisis is real and it affects machine learning, too. But
in addition something noteworthy has been happening in machine learning.
Things seem to work out a bit differently from other sciences. We can
summarize the the key empirical findings as follows:

1. Absolute benchmark numbers, such as accuracy numbers, may satisfy
the minimal bar of code re-execution. They also satisfy the theoretical
guarantee of replication under i.i.d.-sampling (Chapter 4). But they
appear to give little more than that. Even seemingly benign forms of
distribution shift change absolute numbers significantly.

2. Absolute benchmark numbers, in particular, do not have external va-
lidity. They do not replicate under significant variation in testing
conditions.

3. Relative model comparisons and model rankings in the ImageNet
era robustly satisfy internal validity. Model rankings replicate under
reasonable attempts to recreate original testing conditions.

4. Model rankings are sometimes stable even under major dataset varia-
tion. In particular, they show signs of external validity. The scope of
external validity is not fully known.
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Measurement versus ranking

The empirical reality suggests a distinction between quantitative measure-
ment of model abilities versus model rankings. The first is measurement
on a cardinal scale; the other is measurement on an ordinal scale. Absolute
benchmark numbers, construed as cardinal measurements of a model’s la-
tent abilities, lack validity. Model rankings, on the other hand, fare much
better.

We don’t fully understand why. But one important aspect is that measure-
ment and ranking behave differently under competitive pressure. Goodhart’s
law applies to cardinal measurement. Statistical measurement on a cardinal
scale fails under competition. This is the reason the anthropologist Marilyn
Strathern paraphrased Goodhart’s law as: When a measure becomes a target, it
ceases to be a good measure. This is true for cardinal measurement.

Rankings, in contrast, are robust to competition. That’s sort of the point
of ranking and it’s not hard to make this formal. Suppose each participant
in a competition has some true quality. What we observe when we attempt
to measure quality, however, is the true quality in addition to the effort the
participant put into beating the competition. If each participant puts in
the same effort, then the ranking reveals the correct ordering by underlying
quality. The numbers are off, but the ranking is fine.

Benchmarks make a virtue out of gaming the metric. Rather than fighting
Goodhart’s law, they lean into it. This has the consequence that absolute
numbers on benchmarks are meaningless. But on the flip side, if every-
one exhaustively competes over the leaderboard, things can still work out:
Benchmarks can correctly identify the best model at any point in time. The
next chapter continues on this thread.

7.6 Notes

Liu and He repeated the Torralba and Efros game on modern computer vi-
sion benchmarks in 2024.° The main takeaway is the same. It’s still feasible
to predict which dataset an image comes from with high accuracy. Using
state-of-the-art neural networks, they achieved over 80% accuracy in distin-
guishing images from three large collections (YFCC100M, CC12M, and the
DataComp 1B dataset). This is even higher than the 2011 study’s results,
despite these newer datasets being far larger and more varied. It confirms
that each dataset—even “uncurated” ones scraped from the web—still has a
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unique “signature.” Zeng, Yin, and Liu continue the investigation arguing
that the classifiers find meaningful differences in these datasets.°

For a book covering early work on dataset shift and domain generalization,
see Dataset shift in machine learning. > There are many classical theory results
in this area.?’?’

The fact that nothing beats plain empirical risk minimization for do-
main generalization is broadly true in different contexts, including the
DomainBed’ benchmark by Gulrajani and Lopez-Paz and the WILDS bench-
mark by Koh et al.® Wild-time is a related benchmark that tests resilience to
temporal distribution shift.?’ Causal methods that were specifically designed
to mitigate distribution shift also do not outperform standard empirical min-
imization.>!3?

Recht, Roelofs, Schmidt, and Shankar conducted the ImageNet replication
study.'* In particular, they found that a selection frequency of 0.73 most
closely resembled the original test set. The new test set became known as
ImageNet V2 and has been used in many papers on distribution shift since.
There’s a lot of related work on ImageNet, in particular. Tsipras et al.>’
discuss the alignment of the ImageNet benchmark with real-world image
classification, focusing on the difference between selecting one class label per
image and annotating all objects present in the image. Fang, Kornblith, and
Schmidt ask whether progress on ImageNet transfers to the real-world.>*
Beyer et al. ask Are we done with ImageNet? and collect new labels for
ImageNet to see how much accuracy drops. > Feuer et al. compare different
data curation strategies for ImageNet.>°

Yadav and Bottou® use the MNIST lost digits for a similar replication
study on MNIST. Surprisingly, even on MNIST, a much smaller and older
benchmark, the findings are similar. Roelofs et al. 37 conduct a meta study
of overfitting in Kaggle competitions, showing a strong correlation between
public leaderboard and the final private leaderboard. Miller et al. conduct
another such replication study on the Stanford Question Answering Dataset
(SQuAD), a population natural language processing benchmark, and confirm
the findings in this domain. Miller’s dissertation has a few of these results
and provides additional background.®

The linear relationship between in-domain and out-of-domain perfor-
mance breaks down when models were trained on different training data.
This first became apparent when the CLIP model was released that appeared
off “off the line” out-of-domain performance. This advantage is due to greater
diversity in the training data.>”*" We’ll return to this topic in Chapter 10 in
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the context of generative models.

Taori et al. measure the robustness to natural distribution shifts in image
classification.*' They found that most specialized robustness improvements
(like training on corrupted images, or adversarial defenses) did not transfer
better to these natural shifts. Moreover, methods that help with one type of
shift (say, noise corruption) often don’t help with others. The one factor that
consistently improved robustness was using more data: models pretrained
on massive, diverse datasets tended to maintain higher accuracy under
shifts. Geirhos et al. compare the robustness of humans with computer
vision models on out-of-domain vision tasks. Ramanugan et al. study the
connection between pre-training data diversity and fine-tuning robustness. *

Huh, Agrawal, and Efros evaluated what makes ImageNet good for transfer
learning.43 Kornblith, Shlens, Le'® demonstrated the value of ImageNet as a
basis for transfer learning. Salaudeen and Hardt** created ImageNot build-
ing on the data-generating process of Shirali and Hardt'®, who studied the
question what makes ImageNet different from LAION. Kataoka et al. demon-
strate that pre-training image classification models doesn’t necessarily need
natural images.*>

The argument in this chapter is not that there aren’t any problems with
replication and reproducibility in machine learning. Indeed, several works
have pointed out serious problems. A 2018 article in Science argued that
Al faces a reproducibility crisis, noting that Al studies often come with-
out published code or with incomplete implementation details, making it
“hard to verify” many claims.” Henderson et al. examined deep reinforce-
ment learning algorithms and showed their performance can vary wildly
due to seemingly minor choices—random seeds, environment stochasticity,
or evaluation protocols—to the point that conclusions in some RL papers
were unreliable.*® They argued for higher standards, like running multiple
random seeds and reporting variance.

Several meta-studies have tried to quantify the scope of the problem. Gun-
dersen & Kjensmo (2018) reviewed dozens of papers from top Al conferences
and scored them against reproducibility criteria.*” They found many pa-
pers left out crucial details like hyperparameters or even a clear problem
statement. Only a single-digit percentage of papers explicitly stated which
software versions they used, and few provided enough information for exact
re-execution. Pineau et al. (2020) report on the NeurIPS Reproducibility
Challenge, in which volunteers attempted to replicate results of submit-
ted papers.*® While many results do reproduce (with effort), there are also
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cases where reproductions fall short of reported performance, or where key
baselines were missing. An annual venue called MLRC continues the effort.
Researchers at OpenAl attempted to use LLM agents to replicate 20 machine
learning research papers from ICML 2024.*° The best agents still struggled
with the task; machine learning researchers did better with effort.

Kapoor and Narayanan°’ add evidence that machine learning is not im-
mune to the replication crisis. They focus on the issue of data leakage from
test sets intro training sets, and show how it invalidates numerous findings
that apply machine learning to scientific problems. In a similar vein, Leech
et al. report on questionable practices in machine learning.”! The study
focuses on the categories of contamination, cherry picking, and misreport-
ing, discussing several of the themes from the previous chapter, such as
researchers degrees of freedom.

Bouthillier, Laurent, Vincent draw a distinction between the reproducibil-
ity of numerical results and the reproducibility of scientific claims under
different sources of variation. While the former kind may have improved,
the latter not necessarily.”” Liao et al.”® discuss the distinction between in-
ternal and external validity in the context of machine learning benchmarks,
providing a taxonomy of different aspects the two notions of validity. In a
similar vein, Liao, Taori, and Schmidt argue why external validity matters
for machine learning research.>*

The study of Goodhart’s law in the context of machine learning goes back
to work on strategic classification.”> See Rosenfeld’s tutorial for pointers.°°
In economics, related problems fall under the umbrella of principal-agent
problems.
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