10 —
Generative models

The ImageNet era ends as attention shifts to powerful genera-
tive models trained on the internet. The new era also marks a
turning point for machine learning benchmarks.

10 Generative models 1
10.1 Languagemodels, . 3
Training a languagemodel 5

Get the perplexitydown! 7

10.2 Scaling e 10
Trainingdata 13
Scalinglaws Lo o oo 14

The limits of scalinglaws 18

10.3 Early NLP benchmarks 19
10.4 CLIP and a final look at ImageNet 23
Offtheline? 25

105 Notes e 26

Source: The Emerging Science of Machine Learning Benchmarks. M. Hardt,
2025. URL: https://mlbenchmarks.org. Compiled on 2025-08-24.

1

https://mlbenchmarks.org
https://mlbenchmarks.org

At the peak of the ImageNet era, something remarkable happened outside
the view of computer vision. Overshadowed by headline-making break-
throughs in image classification, some researchers worked hard to figure out
what to do about language. Whereas deep convolutional neural networks
had essentially solved static image classification problems, it was much less
clear how to best apply deep learning to natural language processing (NLP).

At the time, state-of-the-art language modeling involved some form of
recurrent neural network (RNN). RNNs consume one word at a time, up-
dating an internal state representation at each step. There’s no easy way to
parallelize this computation, since each step depends on the result of the
previous step. In contrast to the feed-forward networks of the ImageNet era,
RNNs painfully underutilized the parallelism of modern GPUs (Graphics
Processing Units), the engine of the deep learning revolution.

The long sequential computation also spelled trouble for gradient-based
optimization. Gradients typically either grow or shrink exponentially in
the number of sequential operations, a problem known as vanishing or
exploding gradients. This made it generally hard for the model to remember
what had happened at the beginning of a sentence by the time it reached
the end. In fact, for machine translation it helped to also feed in the source
sentence in reverse. ! Fancier architectures, like the Long Short-Term Memory
(LSTM) model, somewhat addressed the problem. But many issues remained.
Recurrent models were hard to scale and finicky to work with. They required
a huge amount of training time and a bag of tricks.

As a result, simpler models trained on more data often matched or out-
performed RNNs in practice. An example is feed-forward neural networks
trained on n-grams, counts of word pairs, triplets, and so forth. Less expres-
sive than recurrent models, they made up for their disadvantage by training
faster on more data.

Against this backdrop, researchers aimed to make feed-forward models
more expressive without sacrificing training speed—to get the best of both
worlds. The breakthrough came in 2017 with the transformer architecture,
introduced in the paper Attention is All You Need.” It reconciled fast training
with complex language modeling and marked the start of a revolution in
sequence modeling.

The key idea behind the transformer architecture, counterintuitively, starts
with what seems like a performance penalty. You have every word in the
sequence interact with every other word. This gives you a quadratic number
of interactions in the sequence length. You then assemble a new sequence

https://mlbenchmarks.org

where each word is a weighted sum of these interactions. This operation
is called dot-product attention and it’s the core component of a transformer
architecture. A transformer model repeats the attention block some number
of times in a feed-forward fashion.

Despite the quadratic blow-up, there are two reasons why transformers
scale well. Since each word is represented by a vector, computing all pairwise
interactions corresponds to matrix multiplication. Matrix multiplication
is what GPUs excel at. Modern GPUs perform hundreds of thousands of
floating point operations in parallel during a single matrix multiplication.
Second, the depth of the network is much smaller than the sequence length.
This greatly reduces the amount of inherently sequential computation com-
pared with an RNN.

Although the basic equation behind the transformer architecture is simple,
a lot more goes into actually making it work. One of the inventors, Jakob
Uszkoreit, explained in a 2024 interview how the “alchemy” was at least as
important as the “conceptual stuff.”> A working transformer implementation
needed all sorts of tricks of the trade, from specific layer normalization and
other black magic in the architecture to label smoothing and a custom
learning rate schedule during training. In 2025, researcher Ellie Pavlick
recalled:

There had already been a feeling of the neural nets taking over,
and so people were very skeptical and pushing back. Everyone’s
main takeaway was, “This is all just hacks.”*

Yet it was precisely this patchwork of conceptual advances, hacks, heuris-
tics, and hardware advances that turned the transformer from a clever idea
into the foundation of a new era in language modeling. Another triumph of
the anything goes.

10.1 Language models

Pick an English sentence you’d find on the internet:
The quick brown fox jumps over the lazy dog.

To feed the sentence into a language model, you first have to encode it
in some specific way. The choices you make here affect both training and
evaluation.

For example, you can think of the sentence as a sequence of words and

https://mlbenchmarks.org

represent each word as a vector indexing the position of the word in the
dictionary. This way of doing it gives you a relatively short sequence, but
each position can take on many values: The Oxford English Dictionary has
about 600,000 words. Alternatively, you could think of the sentence as a
sequence of characters. This results in a much longer sequence, but each
position has fewer options: the ASCII text encoding uses only 7 bits per
character.

The most common practice today lies somewhere in between. You split the
sequence into chunks called tokens. The number of distinct tokens, called
vocabulary size, is typically in the tens of thousands. If each token represents
a byte pair of text, we have 65536 tokens. Allocating one token for each
possible byte pair, though, isn’t the most economical use of our tokens. The
character sequence “have” is far more common in the English language than
the sequence “qj”. It doesn’t make much sense to have to encode the common
word “have” with two tokens, but reserve a special token for “qj”. We'd prefer
to have a single token for common strings like “have” and multiple tokens
for rare strings like “qj”. By choosing tokens cleverly, we can reduce the
sequence length considerably. This is what tokenization does. It’s the first
step of the language modeling pipeline.

A language model is a probabilistic model that assigns a probability
pwiwy---wgq) €[0,1]

to a sequence of n tokens wyw;---w;. Mathematically, a language model
therefore represents a distribution over sequences of varying lengths.

Using the chain rule from probability theory, we can express the probability
of a sequence as a product of next-token probabilities:

n

pwywy---wy) = l_[P(wi | wiwy - w;i_1)
i=1

The next-token probability p(w; | wyw,---w;_y) is the likelihood of token w;
given context wiw, -+ w;_q.

A good language model should make these next-token probabilities large
for plausible sequences and small for implausible sequences. The likelihood
of fox given context “The quick brown” should be much larger than the
likelihood of meatball given the same context. Keep in mind that words
like fox and meatball may correspond to multiple tokens, depending on the
tokenizer.

https://mlbenchmarks.org

We can decode sequences of multiple tokens from a language model token
by token: Start from some piece of context (a prompt), extract the most
likely token given the context, add it to the context, and repeat. Instead of
picking the most likely token at each step, we could sample one randomly
from the next-token distribution. A common practice lies somewhere in
between: Raise each next-token probability to some power 1/7, where the
scalar T > 0 is the temperature parameter, and sample from the modified
distribution. Choosing a temperature less than 1 makes the distribution
more peaked, favoring tokens with larger probabilities. Higher temperatures
make the decoding more random, approaching the uniform distribution as
the temperature rises. What works best depends on the application.

In an intuitive sense, a good language model should be able to solve a
range of interesting problems. For example, we can try to get answers to
knowledge questions. The name Charles Dickens should somehow come
up when the model generates an answer to the prompt: “The author of
Bleak House is.” A language model may also perform translation tasks, if we
prompt for things like “The French word for monkey is.” By varying the
prompt, we can try to solve all sorts of problems, from writing poems to
solving math puzzles. Such prompt engineering is a major part of applying
language models, and a headache for evaluation. There could always be
some other prompt giving a better solution.

How useful a language model actually is hinges on what distribution over
text it models. It’s often not straightforward to describe what distribution
a language model should represent. Echoing our conversation in Chapter
2, language is a diverse and dynamic cultural artifact that defies a static
representation. In practice, a language model ends up representing whatever
corpus—that is, collection of sequences—the model builder used for training.

Training a language model

The chain rule reveals how to turn language modeling into a prediction prob-
lem: Predict the next token given context. Think of the next token y = w; as
the target label in a prediction problem given the features x = wyw;, - w;_4
consisting of the preceding tokens. Each instance of the prediction problem
corresponds to a token prefix x and a next-token target y. This turns unla-
beled data into a sequence of supervised learning examples. Now unleash
the anything goes of machine learning on language modeling.

A parametric language model pg specified by model parameters 6 often
has a maximum context length k. In this case, we only consider next-token

https://mlbenchmarks.org

probabilities with a context window of size k, defined as

po(wi | wi_gwi_gs1 -+, wi_1).

To avoid notational clutter, when k > i, we take this expression to mean
conditioning on the first i — 1 tokens in the sequence. The hope is that for
large enough context length, conditioning on the first k tokens approximates
conditioning on all preceding tokens. Define the probability that a model
with limited context window assigns to a full sequence w as

n
po(wiwy---wy) =]_lpe(wi | Wi Wi—gs1 -, Wi—1).
i=1

Taking logarithms around the product on the right-hand side and multiply-
ing by —1/n gives us the negative average log-likelihood loss function on the
sequence w:

1
L(O;w) = - Zlogpg(wi | Wi wi k1 wis1)-

i=1

n
Here, the vector O represents the model parameters, k is the context length,
and n = |w| is the sequence length. The loss corresponds to the negative
average of the logarithms of the model’s probabilities on the correct next
tokens across the sequence. Given a distribution D over sequences, we
analogously define the expected negative average log-likelihood as

[w|

1
LO)=— E | — 1 w_cwi e wioq) |
() w~D |w|; nge(wz |wz kWi—k+1 wi 1)

This loss corresponds to picking a random sequence, picking a random
position in the sequence and penalizing the model by the logarithm of the
inverse next-token probability. The smaller the probability on the next token,
the higher the loss.

Recalling the cross entropy loss from Chapter 2, we can see that minimiz-
ing this objective function is equivalent—up to scaling—to minimizing the
cross entropy loss in a prediction problem. This has two implications. First,
each gradient update on the negative log-likelihood nudges the model’s prob-
abilities toward the target token. Second, the unconstrained optimal solution
equals the underlying distribution. This is a property of the cross entropy

https://mlbenchmarks.org

loss. We should therefore expect a large enough well-trained language model
to be a lot like the distribution it’s trained on.

The main surprise in language modeling was just how far next-token
prediction could take us.

Get the perplexity down!

Perplexity is a popular metric to evaluate the quality of a language model for
next-token prediction. Perplexity is closely related to the training objective,
the negative average log-likelihood. The early days of sequence learning
were all about getting the perplexity down on toy datasets.

To evaluate the perplexity of a model on a dataset, we first concatenate
and tokenize all sequences in the dataset into one long stream w = w; ---wp
of D tokens. The number of tokens D could be millions or even billions of
tokens depending on the dataset. We can define the perplexity of a model p
on the whole sequence as

PPL = p(w) VP,

Although succinct, it’s more common to express perplexity as the exponential
of the negative average log-likelihood:

PPL = exp(L(p;w)) = exp(—% Y P logp(w;| wlwz---wi_l)) :

By convention in language modeling, the logarithm and exponential have
base e. But perplexity is base-invariant, so long as we use the same base for
the logarithm and exponential.

To convince yourself that the two definitions of perplexity are equivalent,
it’s helpful to take an intermediate step and express perplexity as the geo-
metric mean of the inverses of the next-token probabilities. Letting p; denote
the i-th next-token probability of the model pg on the sequence w,

D] 1/D 1 1/D
PPL:[HE] ()

i=1

An inverse next-token probability corresponds to the effective number of
choices a model has in predicting the next token. Explaining where the name
perplexity comes from, this measures how surprised the model is by the text
it encounters. Smaller perplexity is better.

7

https://mlbenchmarks.org

Perplexity is never smaller than 1 but it could be infinite if the model
assigns zero probability to a token that occurs. Most model evaluation
metrics in machine learning are averages of a bounded quantity. Accuracy,
for example, is the sample average of the error indicator. Perplexity is
rather different. It’s the exponential of an average of potentially unbounded
quantities. As a result, perplexity doesn’t enjoy the strong concentration of
measure results we worked out in Chapter 3. Concentration of perplexity is
weaker and depends on additional assumptions.

If somebody told you they got perplexity 7.28 on some dataset, you
wouldn’t know much from the number alone.

One reason is that perplexity is specific to a tokenizer. If we tokenize into a
vocabulary of size V, the perplexity of the uniform distribution, i.e., random
guessing, is exp(log V') = V. As a result, perplexity is generally smaller over
smaller alphabets. Furthermore, a language model that successfully narrows
down the next token to one of two equally likely options always has the
same perplexity, namely, exp(—log(1/2)) = 2. Such a model is no better than
random guessing when the dictionary is binary, but the guarantee is non-
trivial when the dictionary is large. In other words, perplexity is insensitive
to the hardness of the next-token prediction task.

Hoping to mitigate some of the quirks of perplexity, researchers often
recommend bits-per-byte (BPB):

D
1
1=

Here, B is the total number of bytes of the dataset (before tokenization) and
the logarithm is base 2. Bits-per-byte relates to perplexity as

D InPPL D
BPB = — - — =~ .log, PPL.
B In2 B &2

Bits-per-byte measures how good the language model is at compressing
the dataset. Indeed, standard tools—such as arithmetic coding—can use the
model’s probabilities to compress the dataset down to B - BPB bits up to a
few bits of overhead.

A model that at each step assigns probability 1/2 to each of two tokens
has D/B bits-per-byte. This number is lower (better) the smaller the number
of tokens D is. A larger vocabulary will generally mean that we need fewer

https://mlbenchmarks.org

tokens to encode the dataset. This means the metric—unlike perplexity—
does recognize that next-token prediction is harder over larger vocabularies.
However, if the tokenizer itself is already good at compression, we might
misattribute this compression ability to the language model. Bits-per-byte
confounds the quality of the tokenizer and the quality of the language model.
For this reason, a bits-per-byte number isn’t exactly easy to interpret either.

To make matters worse, both perplexity and bits-per-byte are sensitive to
the ordering of data points in a dataset. Imagine a dataset that consists of
a corpus of millions of tweets. If we arrange tweets by topic, the language
model might generally have more useful context to work with, resulting in
better numbers. Context switching drives up perplexity. If we randomly
arrange the tweets, the previous tweet the model encountered might be
misleading for whatever follows. Of course, absolute perplexity numbers
can also differ sharply from one dataset to the other.

Both metrics are slow to evaluate on large datasets. Practitioners therefore
often only evaluate next-token probabilities every so many tokens (called
stride). These implementation details again influence what absolute number
we end up with.

If perplexity is kind of a strange metric that’s hard to interpret, why was
it so popular? It remained popular because improvements in perplexity
reliably tracked real improvements in language modeling more broadly. Get-
ting the perplexity down on any large enough toy dataset usually indicated
improvements in other downstream tasks.

Attention Is All You Need contains a table showing numerous different trans-
former architectures. For each architecture it lists the perplexity achieved
by the model and its BLEU score, a metric for machine translation. Plotting
perplexity and BLEU score in a scatterplot, we see a clear trend: The smaller
the perplexity, the better the BLEU score.

The perplexity numbers in this plot are word-piece perplexities. Don’t look
at the absolute numbers. They don’t directly compare to other perplexity
numbers. It’s the rank correlation that matters.

Getting the perplexity down was a signal model builders trusted.

The dataset didn’t have to be fancy or realistic. Popularized in 2010 as a
perplexity benchmark, the Penn Treebank dataset was one of the standard
choices. Derived from a 1993 syntax benchmark, it featured text from Wall
Street Journal articles, with fewer than 1M words in the training set and
82,000 words in the test set. Like CIFAR-10 for image classification, toy

https://mlbenchmarks.org

Transformer variants: Perplexity vs BLEU score

® models
—— linear fit: BLEU = -1.3-PPL+32

BLEU, higher better —
N
9]
(e}

6.00 575 550 525 500 475 450 4.25
Perplexity (PPL), lower better —

Figure 10.1: Scatterplot of transformer model variants from Attention Is All
You Need: Lowest perplexity has highest BLEU score.

datasets like Penn Treebank were part of many language model evaluation
pipelines. Even in 2024, researchers continued to observe that perplexity
tracked downstream benchmark performance.”

Researchers rediscovered the familiar external validity of the iron rule:
Improvements in perplexity on any sufficiently large dataset implied im-
provements elsewhere, too. The number was irrelevant. Beating the previous
best was all that mattered.

And so the competition began.

10.2 Scaling

The original transformer architecture from 2017 sported 65 million parame-
ters in its base model. It reached state-of-the-art on a machine translation
benchmark after training for twelve hours on eight GPUs.

A year later, researchers at Google released BERT, an improved transformer
model with 110 million parameters—and 340 million in its large version—
trained on 3.3 billion words of text from BookCorpus and English Wikipedia. °
BERT was trained on masked language modeling: Rather than predicting the
next token, the objective is to predict randomly masked tokens given the
whole sentence. In addition, BERT trained on next sentence prediction: a

10

https://mlbenchmarks.org

binary classification problem to distinguish the actual next sentence from
a random sentence. This way of training resulted in good text embeddings
broadly useful for downstream language tasks. A valuable open-source
tool, BERT created its own lineage featuring RoBERTa, DistilBERT, ALBERT,
BigBird, and DeBERTa, among many others, as well as domain-specific
variants such as BioBERT, SciBERT, Legal BERT, and CodeBERT.

Around the same time as BERT, OpenAl released GPT-1, a transformer
model with 117 million parameters trained on 5 GB text from BookCorpus.
Unlike BERT, GPT-1 trained on the basic next-token prediction objective.
Like BERT, GPT-1 needed supervised fine-tuning on downstream tasks to
achieve strong performance. At the time, however, researchers generally
preferred BERT over GPT-1. GPT-1 seemed like an interesting but less
powerful transformer model.

Nevertheless, OpenAl continued to scale up the GPT architecture toa 1.5
billion-parameter model, dubbed GPT-2, released in 2019.” To train GPT-2,
OpenAl scraped about 8 million outgoing Reddit links with at least 3 karma
points, resulting in roughly 40 GB of text from the internet.

With some prompt-engineering, GPT-2 generated plausible-looking pieces
of text on its own without the need for additional fine-tuning. Evaluation
without additional supervision earned the name zero-shot evaluation. This
ability to solve tasks without fine-tuning emerged on its own with enough
training data. The training objective remained next-token prediction with
no explicit cues about any downstream test task. GPT-2’s outputs were
often quirky—sometimes on point, sometimes far off. Still, the model jolted
researchers’ assumptions, adding evidence that large language models were
on to something.

What other abilities would emerge with additional scale?

In 2020, OpenAl released GPT-3, a model with 175 billion parameters
trained to predict the next token on about 400 billion byte-pair encoded
tokens of web-crawled text.® GPT-3 could tackle new tasks by learning from
a few examples provided in the prompt—a technique called few-shot prompt-
ing. This ability—known as in-context learning—emerged with sufficient
scale (training data, model size, and compute).

GPT-4 arrived three years after GPT-3, rumored to have 1.8 trillion param-
eters in a mixture of experts architecture.’ If this number is fact, the relative
increase in model size from GPT-3 to GPT-4 is more modest than the step
from GPT-2 to GPT-3. Increasingly, companies invested not only in scaling

11

https://mlbenchmarks.org

Growth of LLM model sizes in the transformer revolution

TOET - Luilion o eGCPTA
4 @PaLM
9]
= Lot © GPT-3 ® Gopher
:
&,
- 1010 4
o
~
.-é) (R S— Lbillion __ ________ OGPT2
=]
z 1084 - 0 GPT-1

@ Original
2017 2018 2019 2020 2021 2022 2023

Figure 10.2: Model size growth in the transformer revolution. GPT-4 model
size according to an unconfirmed estimate.

the model but also in finding clever ways to fine-tune and prompt the base
model.

But what exactly are the limits to scaling?

In the early transformer days, it looked like hardware might become the
bottleneck to continued scaling. Scaling required unprecedented compute
resources, typically thousands of GPUs running for months to train a single
model. Training GPT-3 reportedly took about 3 x 10?3 floating point oper-
ations (FLOPs). Those consumed more than one million kilowatt-hours of
electricity !°, roughly like the energy your body would use in 1200 years.
And that’s just one model—an old one at that—and only one training run. By
training Al models and serving them on digital platforms, tech companies
have been growing an enormous carbon footprint.!' =13

For decades, computer scientists had relied on Moore’s Law, the empirical
trend that transistor counts on chips doubled roughly every two years. But
this pace began to falter in the 2010s. Yet, what enabled the transformer
revolution despite the end of Moore’s Law was special-purpose hardware.
GPU manufacturer NVIDIA kept finding ingenious ways to squeeze more
floating point operations per second out of special-purpose designs aimed at
deep learning broadly, and later transformers specifically. This maintained—
and often bested—the gains of Moore’s Law. In fact, the computing capacities
of tech companies increased to the point that a different bottleneck appeared:
Model builders might run out of high-quality data.'*

12

https://mlbenchmarks.org

Training data

Founded in 2007, Common Crawl is a non-profit organization—small in
staff size—that’s had an outsized impact on the development of artificial
intelligence. !> Common Crawl maintains petabytes of openly accessible web
data. It didn’t take long before researchers realized that Common Crawl
could be a source of “dirt cheap” training data NLP applications.'® Many
training and benchmark datasets now come from filtering Common Crawl
sources.

A single monthly Common Crawl snapshot contains hundreds of terabytes
of data from billions of pages. Unfortunately, much of it has limited value
for model training. Much of Common Crawl is boilerplate, menus, ads, login
pages, duplicate content, junk sites, and spam.

Creating a good training set requires filtering much of the available data.
Facebook’s CCNet dataset, derived from Common Crawl, retained only 3.2
TB of compressed text starting from the February 2019 monthly Common
Crawl snapshot.!” Google’s C4 dataset—created for the T5 model family—
fished out around 750 GB of text from an initial 20 TB.!® To train GPT-3,
OpenAl filtered 570 GB of text from an initial 45 TB of Common Crawl data
covering the years 2016 to 2019.°

Among the high-quality parts of the internet are the pages of Wikipedia,
Reddit, Stack Exchange, GitHub, ArXiv, Project Gutenberg, and various
news sites. Project Gutenberg, a collection of more than 75,000 free books
online, adds up to tens of gigabytes of uncompressed text. The same is true
for the English text portion of Wikipedia. These precious data sources have
long been in language model training sets.

It’s a safe bet that the latest large language models have trained on these
high-quality parts of the accessible internet.'” There’s more data, however,
in closed sources, behind paywalls and logins, in private chats and mail
accounts, and across company intranets and government servers. Al compa-
nies are scrambling to find additional resources for training.?%?! The data
squeeze in turn had companies engage in more aggressive and questionable
data acquisition practices. '’

There are several ongoing lawsuits and debates about what data may be
used for training large generative models.””?> The legal bases for these
lawsuits include claims of copyright infringement, trademark dilution and
violation, breach of licenses, in addition to privacy and data-protection
claims. More broadly, content creators argue that companies take their

13

https://mlbenchmarks.org

intellectual labor without attribution or permission to build commercial
products. These products, like chatbots and assistants, largely exclude
content creators from the revenue stream.?*=>"

Aside form its serious ethical dimension, the scarcity of accessible high-
quality training data raises a practical question: How large a model can we
train with a given amount of data? In other words, how much data is needed
to best utilize an available compute budget? Scaling laws attempt to give an
answer.

Scaling laws

Scaling laws refer to empirical relationships between test loss (or perplexity)
and resource increases in terms of model size, dataset size, and compute.
In 2020, researchers at OpenAl published a scaling law for training large
language models:

Language modeling performance improves smoothly as we in-
crease the model size, dataset size, and amount of compute used
for training. For optimal performance all three factors must be
scaled up in tandem. Empirical performance has a power-law
relationship with each individual factor when not bottlenecked
by the other two. "'

A scaling law predicts the test loss of a model trained at larger scale from
smaller scale training runs. In addition, the authors claim that performance
primarily depends on scale and less on architecture design:

Performance depends strongly on scale, weakly on model shape:
[...] Within reasonable limits, performance depends very weakly
on other architectural hyperparameters such as depth vs. width.>!

It therefore seemed to some as though architecture search was essentially
over—it only remained to scale up the same kind of transformer architecture.
Contrast this with the ImageNet era or the RNN days, where the competition
was all about the model architectures. Now it looked like one architecture
was good enough and scale was the one remaining dimension of competition.
Consequently, the faith in scaling laws licensed massive investments in
compute resources to scale up essentially the same kind of model in the
years that followed. Looking back, tranformers didn’t end architecture
search. There is much active research on alternative architectures. There are
good reasons to believe that other architectures might be equally good—or
better—with sufficient scale and optimization.

14

https://mlbenchmarks.org

Building a scaling law. Let’s dig into the details of a scaling law. A typical
scaling law has four key parameters:

* Compute budget C (in FLOPs)

* Number N of model parameters

* Dataset size D (in number of tokens)

* Final cross-entropy training loss L(N, D) of a stochastic gradient method
making a full pass over the data

We can eliminate one parameter with the FLOPs heuristic
C=6ND.

The equality derives from a useful oversimplification. In a transformer, the
main computation involves matrix-vector multiplication between a weight
matrix and a vector-encoded token. Therefore each model weight and token
contribute one addition and one multiplication. Computing the model
output across all tokens therefore costs 2ND FLOPs. This is the forward
pass in a gradient based optimization method that computes the loss values.
The backward pass computing the gradient is about twice as expensive as
the forward pass, adding another 4N D operations. The two add up to 6ND
FLOPs. For long sequences, the cost of computing the quadratic number of
attention interactions dominates. But the simple heuristic is good enough
for a scaling law for typical sequences.

Next we need to model the loss L(N, D). This is where the power law comes
in. Assume the loss has the functional form:

L(N,D)=E+AN%+BD P,

This form is loosely inspired by a learning-theoretic heuristic. We can
decompose the test loss into the sum of the Bayes optimal error (cf. Chapter
2), a model approximation error, and a stochastic optimization error. The Bayes
optimal error is a constant E independent of N and D that depends only
on the population. The model approximation error measures how well the
model approximates the Bayes optimal predictor. It’s plausible to assume
that it’s only a function of the model size N and follows a power law AN~¢,
for constants A and a > 0. Similarly, the optimization error measures how
close to optimal a single pass over the data with a stochastic gradient method
gets us. It’s not unreasonable to imagine that this is a only a function BD™F
of the dataset size D.

With enough compute resources, we can now fit the scaling law empirically
by collecting data from many training runs with varying parameters of N

15

https://mlbenchmarks.org

Loss L(N, D) contours with compute-optimal path
\

1 \

—— Compute-optimal (log,,N*,log,,D")

lel3 1

lel2 1

19g |

lell A

1e10 1

1e9 1 30—

Dataset size D (tokens)

168 4 i 4.05 —f

le7 T —— T -
le6 le7 1e8 1e9 lel0 lell

Model size N (parameters)

Figure 10.3: Contours of the estimated loss function in terms of the number
of model parameters and number of training tokens. As you vary the com-
pute budget, the parameters that minimize the loss for the given compute
budget form line in the log-log plot.

and D. Following the first scaling law, researchers at Google proposed an
improved scaling law, known as Chinchilla®? scaling, that has the empirical
power-law relationship with coefficients E = 1.69, A = 406.4, B=410.7 and
exponents a = 0.34 and g = 0.28.

A scaling law has at least two applications. First, it lets us predict the
performance of large models from smaller scale experiments. Second, the
functional form of the scaling law, lets us answer the question we started out
from: Given a compute budget, how much data do we need and how large a
model should we train?

Compute-optimal scaling. To find the best settings of the parameters N
and D for a given compute budget of C FLOPs, we can minimize the
loss L(N, D) subject to the constraint that C = 6ND.

The resulting compute-optimal values Nop and Doy have power laws

NOpt ~ Ca al’ld DOpt ~ Cb,

16

https://mlbenchmarks.org

respectively, with exponents a = 0.46 and b = 0.54. The fact that the two
exponents are close means that we should scale N and D proportionately
with our compute budget. In fact, Chinchilla recommends D ~ 20N. Loosely
speaking, a factor four increase in compute budget should come with a factor
two increase in both model size and dataset size. If we use fewer model
parameters than that, we risk overtraining with diminishing returns. If we
use fewer data points than that, we risk undertraining, the opposite problem
where additional data would give solid improvements.

Chinchilla scaling contradicted the earlier estimates by Kaplan et al. The
latter suggested that dataset size D should scale as D ~ N%74 at optimality.
This relationship means that ten times the parameters needs about 5.5 times
the data, a more “compute hungry” scaling law where model size outgrows
data. Chinchilla scaling is more “data hungry” by comparison. It suggests
that data should grow on the same order as model size. A consequence of
Chinchilla scaling is that models like GPT-3 were likely too large. For the
same compute budget, a smaller model trained on more data would’ve been
better.

In a world where we are compute-bound, Chinchilla’s law lets us use more
data before we run out of compute. If we’re data-starved, the situation is
the other way around. We wish that we needed less data to fully utilize our
available compute budget. It wasn't clear from the beginning where we’d end
up. Compute looked like it was going to be the bottleneck. But many years
of rapid improvements in GPU hardware, software to utilize such hardware,
and unprecedented scaling of compute facilities by tech companies have put
us in a different world.

But this raises the question how much of a law is a scaling law anyway?

The limits of scaling laws

Researchers have fit power laws to large datasets for some time now. In the
heyday of social network research, reports of power laws in social graphs
were a recurring spectacle in prestigious journals. The degree distribution,
reshare counts, community sizes, and post frequencies all looked like power
laws. Retrospectively, however, Clauset, Shalizi, and Newman demonstrated
that many other distribution families fit the data just as well as the power-
law distribution.?> The work tells a cautionary tale about the statistical
application of power laws to real-world data. But this statistical complication
isn’t the only caveat.

17

https://mlbenchmarks.org

Scaling laws aren’t physical laws that nature handed to us. Scaling laws
reflect statistical regularities within a given engineering setup, not laws of
nature. They are patterns that come from the particular ways that people at
OpenAl, Meta, and Google build large transformer-based language models.
This doesn’t mean they aren’t useful. Holding various engineering prac-
tices fixed, they let you extrapolate training loss under scaling of model
parameters and dataset size.

In a sense, scaling laws are self-fulfilling prophecies. By following the
prescriptions of a scaling law, researchers and engineers make the law more
true. In fact, this is a well-known phenomenon with financial models such as
the Black-Scholes model for pricing options. When introduced in 1973, the
model was a theoretical abstraction whose assumptions did not have much
empirical support. However, traders began to use the Black-Scholes model
to price options—because it was simple, elegant, and eventually became
standard. The sociologist Donald MacKenzie worked out how this broad use
of the Black-Scholes model became self-fulfilling.>* As traders embedded the
model in financial practice, market behavior began to conform to the model’s
assumptions. That was at least until faith in those kinds of assumptions
declined sharply with the collapse of a major hedge fund (LTCM) in 1998,
and ultimately the Great Recession that followed the financial crisis in 2007.

Finally, perhaps the biggest caveat about scaling laws is that they only
hold for test loss (or perplexity) but not necessarily for downstream task
performance. This problem relates to debates about emergent abilities: Perfor-
mance in some downstream tasks can pick up unpredictably at a certain large
enough model scale.’> Such emergent capabilities are in a sense counterex-
amples to scaling laws for downstream tasks. Emergence has been the source
of much debate’® among experts and anxiety about the potential risks of
large language models.*’

10.3 Early NLP benchmarks

From the get-go, the transformer revolution had one stark difference with
the deep learning revolution in computer vision. Unlike image classification
in the 2010s, natural language understanding (NLU) had no single central
benchmark. Whereas ImageNet was the direct target of the competition
over the best deep convolutional models, language benchmarks appeared
more downstream of the action. If anything, benchmarks struggled to cope
with the rapid advances in transformer models. To better understand the

18

https://mlbenchmarks.org

problem, it’s worth taking a look at the earlier NLP benchmarks that were
around in the 2010s when transformers came up. In the following chapters,
we’ll move on to more recent benchmarks.

Text comprehension. First released in 2016, the Stanford Question Answer-
ing Dataset (SQuAD) is a reading comprehension benchmark consisting of
around 100,000 question-answer pairs.>” The answer is contained in the
provided context. The challenge is to extract the correct answer from the
text snippet. Here’s an example:

Context: The university is the major seat of the
Congregation of Holy Cross (albeit not its official
headquarters, which are in Rome). Its main seminary,
Moreau Seminary, is located on the campus across St.
Joseph lake from the Main Building. 0ld College, the
oldest building on campus and located near the shore of
St. Mary lake, houses undergraduate seminarians. Retired
priests and brothers reside in Fatima House (a former
retreat center), Holy Cross House, as well as Columba
Hall near the Grotto. The university through the Moreau
Seminary has ties to theologian Frederick Buechner. While

not Catholic, Buechner has praised writers from Notre
Dame and Moreau Seminary created a Buechner Prize for
Preaching.

Question: What is the primary seminary of the Congregation
of the Holy Cross?

Answer: Moreau Seminary

Early transformer models reliably solved SQuAD with fine-tuning. SQuAD
2.0, released in 2018, made the benchmark harder by adding unanswerable
questions after accuracy numbers on the original benchmark had saturated
quickly in the BERT model era.*®

Another popular reading comprehension benchmark, SNLI*? (Stanford
Natural Language Inference) targets natural language entailment: The goal is
to classify the logical relationship of two consecutive sentences as neutral,
contradiction, and entailment.

A person on a horse jumps over a broken down airplane.
A person is training his horse for a competition.
1 neutral

19

https://mlbenchmarks.org

A person on a horse jumps over a broken down airplane.
A person is at a diner, ordering an omelette.
2 contradiction

A person on a horse jumps over a broken down airplane.
person is outdoors, on a horse.
0 entailment

b=

Just like SQuAD, the SNLI benchmark—and its extension MultiNLI—
quickly became too easy for large transformer models. These benchmarks
were high-quality efforts testing important linguistic competencies. Large
language models solved them with ease, sparking debates about what it is
that language benchmarks actually test for.*’

A test less subject to abuse. In an ambitious proposal, the creators of the
Winograd Schema Challenge (WSC) aimed at an alternative to Turing Test. *'
The authors start from a compelling analysis of the shortcomings of Turing’s
Imitation Game as a measure of intelligence. Among its issues is the fact
that the test encourages “deception and trickery”. The authors therefore
articulate desiderata for a better benchmark “that is less subject to abuse”.
Specifically, a benchmark should have

the subject responding to a broad range of English sentences;
native English-speaking adults can pass it easily; it can be ad-
ministered and graded without expert judges; no less than with
the original Turing Test, when people pass the test, we would say
they were thinking.

Of the four criteria, the last is the most ambitious. A good test should
require thinking. Inspired by textual entailment benchmarks, the authors
propose a type of commonsense reasoning challenge. Consider the sentence:

The delivery truck zoomed by the school bus because it was
going so slow.

The pronoun it is ambiguous in this sentence. It could refer to either the
delivery truck or the school bus. But we can tell from commonsense reasoning
that it probably refers to the school bus. Change the last word of the sentence
to fast and you get a different resolution:

The delivery truck zoomed by the school bus because it was
going so fast.

20

https://mlbenchmarks.org

The pronoun now refers to the delivery truck. This pair of sentences is
called a Winograd schema. WSC turned 136 such schemas into 273 test
questions such as:

The city councilmen refused the demonstrators a permit
because they feared violence. Who feared violence?

A. The city councilmen

B. The demonstrators

The WSC creators assumed perfect human accuracy, but humans score a
few accuracy points lower than that.*?

Much thought, expertise, and ambition went into the design of WSC and
the plan to replace the Turing Test with a more trustworthy benchmark.
But WSC didn’t escape the fate of all other benchmarks around the time. A
fine-tuned RoBERTa model achieved well over 90% accuracy in 2019. The
benchmark was soon considered solved.

WSC illustrates a robust lesson from benchmark design. Benchmarks—
intended as measurements of latent constructs such as intelligence—tend to
tail, even if carefully devised. The creators assumed that solving WSC would
necessarily involve some form of reasoning. But the success of models like
BERT shook this assumption.

Inspired by WSC, researchers introduced Winogrande, a larger version of
WSC filtered to eliminate statistical biases that may let a model shortcut the
commonsense reasoning task.*® Performance on Winogrande plateaued near
human performance with GPT-4 and subsequent models.

Back to perplexity? Popularized by the release of GPT-2, LAMBADA (LAn-

guage Modeling Broadened to Account for Discourse Aspects) is a word

prediction benchmark testing relatively long-range discourse comprehen-
‘o 44

sion.

Context: He shook his head, took a step back and held his
hands up as he

tried to smile without losing a cigarette. "Yes you can,"
Julia said in

a reassuring voice. "I’'ve already focused on my friend. You
just have to

click the shutter, on top here."

Target sentence: He nodded sheepishly, through his cigarette
away and

21

https://mlbenchmarks.org

took the
Word: camera

By design of the benchmark, humans can easily guess the last word when
seeing the whole passage, but struggle to do so when they only see the target
sentence.

The OpenAl version of LAMBADA stuck around for some time as a lan-
guage modeling benchmark. Although the corpus is far from comprehensive,
model builders trusted the signal that perplexity improvements on the
benchmark provided. Indeed, Google evaluated its 2022 PaLM model with
more than 500 billion parameters on LAMBADA.

Looking back, perplexity on relatively toy datasets was arguably the main
benchmark for much of the transformer revolution. It was around for the
discovery of the transformer architecture, it supported scaling laws, and it
continued to support model comparisons in an increasingly chaotic bench-
marking ecosystem.

Multi-task benchmarks. As different benchmarks for natural language
understanding proliferated, it made sense to combine many of these into a
single meta benchmark. And so the idea of a multi-task benchmark caught on.

The General Language Understanding Evaluation (GLUE) benchmark *
grouped nine established natural language understanding benchmarks into
one benchmark with a public leaderboard. Tasks include grammar checking,
sentiment analysis, paraphrasing, sentence similarity, and natural language
inference problems. All tasks are single sentence or sentence pair classifica-
tion problems.

But aggregating many benchmarks into one didn’t solve the issues with
individual benchmarks. In a position paper from 2021, Bowman and Dahl
reflect on the trouble with benchmarking in light of the transformer revolu-
tion:

Performance on popular benchmarks is extremely high, but ex-
perts can easily find issues with high-scoring models. The GLUE
benchmark, a compilation of NLU evaluation tasks, has seen
performance on its leaderboard approach or exceed human per-
formance on all nine of its tasks. The follow-up SuperGLUE
benchmark project solicited dataset submissions from the NLP
research community in 2019, but wound up needing to exclude

22

https://mlbenchmarks.org

the large majority of the submitted tasks from the leaderboard
because the BERT model was already showing performance at
or above that of a majority vote of human crowdworkers. Of the
eight tasks for which BERT did poorly enough to leave clear head-
room for further progress, all are now effectively saturated. *°

Transformers shook the benchmarking enterprise and eroded trust in an
institution that had delivered results for decades. As transformers models
progressed, a benchmarking crisis loomed.

10.4 CLIP and a final look at ImageNet

The transformer revolution also came around to image classification. Rather
than curating a labeled datasets, such as ImageNet, researchers found that
they could train image representations on web crawled data in an unsuper-
vised manner:

[T]he simple pre-training task of predicting which caption goes
with which image is an efficient and scalable way to learn SOTA
image representations from scratch on a dataset of 400 million
(image, text) pairs collected from the internet.*’

The quote is from the abstract of the paper that introduced OpenAl’s CLIP
model at the beginning of 2021. CLIP trained on a simple unsupervised
objective that easily scaled to web crawled data without costly human su-
pervision. By consuming image-caption pairs, the model jointly learns an
image representation and a text representation that talk to each other. Text
that suits an image well, like a good caption, ends up close to the image in
embedding space.

A piece of pseudocode—from the original paper—best illustrates the core
idea.

image_encoder - ResNet or Vision Transformer

text_encoder — CBOW or Text Transformer

I[n, h, w, c] - minibatch of aligned images

T[n, 1] — minibatch of aligned texts

W_i[d i, d_e] - learned proj of image to embed
W_t[d t, d e] - learned proj of text to embed
t — learned temperature parameter

extract feature representations of each modality
I_f = image_encoder(I) #[n, d_1i]

23

https://mlbenchmarks.org

T f = text_encoder(T) #[n, d_t]
joint multimodal embedding [n, d_e]
I_e = 12_normalize(np.dot (I_f, W_1i), axis=1)

T e = 12_normalize(np.dot(T_f, W_t), axis=1)

scaled pairwise cosine similarities [n, n]
logits = np.dot(I_e, T_e.T) % np.exp(t)

symmetric loss function

labels = np.arange (n)

loss_i = cross_entropy_loss(logits, labels, axis=0)
loss_t = cross_entropy_loss(logits, labels, axis=1l)
loss = (loss_i + loss_t)/2

CLIP was a bit like the GPT of image representations. Like GPT, CLIP
solved no fixed task; the model applies to various tasks via zero-shot prompt-
ing. The model accepts both text and image inputs. To have it classify cats
versus dogs, you give it the image and check whether the embedding of the
text a photo of a cat is closer to the image embedding than the embedding of
a photo of a dog.

What you need to train a model like CLIP are tons of image-caption
pairs, which the internet abundantly supplies. The dataset OpenAl crawled
and used for CLIP training was never available. However, a grassroots
initiative called LAION created a massive dataset of image-caption pairs
by filtering Common Crawl sources, culminating in nearly 6 billion image-
caption pairs.*® With the help of LAION, researchers successfully created
an open-source replication of CLIP.*’

Off the line?

The allure of CLIP compared to earlier ImageNet models is its apparent
robustness to changing domains. In particular CLIP’s image representations
transfer more gracefully from one domain to another compared with its
earlier competitors trained on ImageNet. Where those models” accuracies
drop sharply when going from ImageNet to other domains, CLIP’s accuracy
is about the same.*’ In Chapter 7, we saw that in a typical scatterplot of in-
domain and out-of-domain accuracies, models trained on ImageNet cluster
on a line below the main diagonal. CLIP defied the line. It landed solidly
above the line.

24

https://mlbenchmarks.org

The creators of CLIP attribute its robustness to the zero-shot paradigm:
You can’t overfit to a dataset, if you zero-shot your model predictions. CLIP
trained on image-caption pairs from the internet, favoring no particular
domain. ImageNet models, on the other hand, trained on one specific dataset
and therefore suffered elsewhere.

But if CLIP trained on the internet, isn’t it possible that it has already seen
many of the test cases before? After all, various benchmark datasets also
originate from the same kind of web crawls. Did CLIP perhaps train on the
test set, thus committing the cardinal sin of machine learning benchmarks?
Following this suspicion, researchers asked: “Does CLIP’s Generalization
Performance Mainly Stem From High Train-Test Similarity?”>" Betteridge’s
law of headlines commands that the answer to any question in a headline is
no. Indeed, the study finds that the situation is not so simple:

“[...] it is questionable how meaningful CLIP’s high zero-shot
performance is as it seems likely that web-scale datasets like
LAION simply contain many samples that are similar to com-
mon OOD benchmarks originally designed for ImageNet. To test
this hypothesis, we retrain CLIP on pruned LAION splits that
replicate ImageNet’s train-test similarity with respect to com-
mon OOD benchmarks. While we observe a performance drop
on some benchmarks, surprisingly, CLIP’s overall performance
remains high.”

There is no smoking gun evidence that CLIP’s transfer performance is due
to training on the test set. The problem is more subtle. By training on the
internet broadly, CLIP already encountered the domains that it was later
evaluated on. Whereas a model trained on ImageNet had never seen cartoon
versions of various objects, for example, CLIP must have seen lots of them
during training;:

Indeed, Mayilvahanan et al. (2023) revealed that CLIP’s training
data contains exact or near duplicates of samples of many OOD
datasets. Yet, they showed that CLIP still generalizes well when
this sample contamination is corrected. However, their analysis
failed to account for domain contamination. In contrast to sam-
ple contamination, domain contamination does not care about
duplicates of specific datapoints but instead checks whether cru-
cial aspects of a test domain are included in the training domain,
e.g., by including images with different content but similar style
to test samples.”!

25

https://mlbenchmarks.org

Training on the internet poses a challenge to benchmarking. Most com-
mercial model providers give little to no insight into training datasets. As a
result, the evaluator doesn’t know what data a model has already encoun-
tered. There is no way to rule out that a model hasn’t already seen the kind of
data that’s in any particular benchmark. Comparisons of models trained on
different training data are never apples-to-apples comparisons. One model
may have trained on data more similar to the test task than the other model.
The next chapter continues this thread.

10.5 Notes

Language modeling in its current form of next-word prediction dates back
to Shannon’s 1950s work.>? Shannon estimated the entropy of the English
language to be between 0.6 and 1.3 bits per character. The estimate comes
from how well humans can predict the next word in English sentences. He
compared this to how well n-gram models do.

The Computer History Museum conducted an interview with Jakob Uszko-
reit in 2024 that conveys a wealth of intuition and background about the
development of the transformer architecture.® Phuong and Hutter give a
helpful precise description of transformers.’> Alammar’s The Illustrated
Transformer adds valuable visual intuition.’* Sasha Rush’s The Annotated
Transformer walks through the implementation of a transformer model. >’

Coining the term foundation models, Bommasani et al. provide a compre-
hensive overview, background, and discussion of large language models in
the paper On the opportunities and risks of foundation models.*’

Mikolov et al. introduced popularized the Penn Treebank dataset for lan-
guage modeling.’® The dataset is the UPenn Treebank portion of the WSJ
corpus comprising 930K words in the training set, 74K words in a validation
set and 82K words in the test set. It became a standard corpus that many
researchers reported perplexity numbers on.

Scaling laws have been the subject of much research beyond the scope of
this chapter. One line of work studies the possibility of predicting down-
stream task performance—rather than test loss—from model scale. Evidence
against it comes from the observation of emergent capabilities: Downstream
task performance can vary unexpectedly with model scale.>> However, in
2024, Gadre et al. show a power-law relationship between perplexity and
the average benchmark performance in a suite of downstream tasks.” In the

26

https://mlbenchmarks.org

opposite direction, Maor, Carmon, and Berant argue that scaling laws for
downstream tasks requires additional computational work.>” In addition,
Lourie, Hu, and Cho demonstrate numerous cases where training loss fails
to predict downstream task performance.>® The evidence is that there are no
reliable scaling laws for downstream performance. The next chapter sheds
more light on this topic.

Varoquaux, Luccioni, and Whittaker discuss the negative consequences of
Al scaling.!'® Not all problems require scale or benefit equally from scale.
Benchmarks overemphasize the benefits of scaling. Continued scaling is
environmentally unsustainable. In addition, scaling may lead to a concen-
tration of power as fewer companies are able to compete over large models.
Finally, scaling forces more aggressive data collection practices that lead to
several problems. Paullada et al. survey ethical pitfalls in the development
of machine learning datatasets with a focus on NLP benchmark datasets. >’

Liu et al.®? give a help history of the ImageNet model development lead-
ing up to CLIP era models. Fang et al. demonstrate that the increase in
robustness of the CLIP model is due to greater diversity in the training
data.®!

27

https://mlbenchmarks.org

1]

2]

Bibliography

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning
with neural networks. Advances in neural information processing systems, 27,
2014.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.
Advances in neural information processing systems, 30, 2017.

Jakob Uszkoreit and Computer History Museum. Chatbots decoded interview:
Jakob uszkoreit. Video interview, Computer History Museum "Chatbots De-
coded" exhibition, 2024. Published on YouTube, created for the CHM "Chatbots
Decoded" exhibit, edited.

John Pavlus. When ChatGPT broke an entire field: An oral history, 2025.
Accessed 2025-06-09.

Samir Yitzhak Gadre, Georgios Smyrnis, Vaishaal Shankar, Suchin Gururangan,
Mitchell Wortsman, Rulin Shao, Jean Mercat, Alex Fang, Jeffrey Li, Sedrick Keh,
et al. Language models scale reliably with over-training and on downstream
tasks. arXiv preprint arXiv:2403.08540, 2024.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:
Pre-training of deep bidirectional transformers for language understanding.
In Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume
1 (Long and Short Papers), pages 4171-4186, 2019.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya
Sutskever, et al. Language models are unsupervised multitask learners. OpenAI
blog, 1(8):9, 2019.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. Language models are few-shot learners. Neural Information
Processing Systems (NeurIPS), 33:1877-1901, 2020.

28

https://mlbenchmarks.org

[9]

[12]

[13]

[14]

[15]

[16]

Maximilian Schreiner. Gpt-4 architecture, datasets, costs and more leaked,
2023. Updated 2023-07-11.

Alex De Vries. The growing energy footprint of artificial intelligence. Joule,
7(10):2191-2194, 2023.

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy
considerations for modern deep learning research. In Proceedings of the AAAI
conference on artificial intelligence, volume 34, pages 13693-13696, 2020.

Alexandra Sasha Luccioni, Sylvain Viguier, and Anne-Laure Ligozat. Estimat-
ing the carbon footprint of bloom, a 176b parameter language model. Journal
of machine learning research, 24(253):1-15, 2023.

Gaél Varoquaux, Sasha Luccioni, and Meredith Whittaker. Hype, sustainability,
and the price of the bigger-is-better paradigm in ai. In Proceedings of the 2025
ACM Conference on Fairness, Accountability, and Transparency, pages 61-75,
2025.

Pablo Villalobos, Jaime Sevilla, Lennart Heim, Tamay Besiroglu, Marius Hobb-
hahn, and Anson Ho. Will we run out of data? an analysis of the limits of
scaling datasets in machine learning. arXiv preprint arXiv:2211.04325, 1, 2022.

Stefan Baack and Mozilla Insights. Training data for the price of a sandwich.
Retrieved May, 9:2024, 2024.

Jason R Smith, Herve Saint-Amand, Magdalena Plamada, Philipp Koehn, Chris
Callison-Burch, and Adam Lopez. Dirt cheap web-scale parallel text from the
common crawl. Association for Computational Linguistics, 2013.

Guillaume Wenzek, Marie-Anne Lachaux, Alexis Conneau, Vishrav Chaud-
hary, Francisco Guzman, Armand Joulin, and Edouard Grave. Ccnet: Extract-
ing high quality monolingual datasets from web crawl data. arXiv preprint
arXiv:1911.00359, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter] Liu. Exploring the limits of
transfer learning with a unified text-to-text transformer. Journal of machine
learning research, 21(140):1-67, 2020.

Pablo Villalobos, Anson Ho, Jaime Sevilla, Tamay Besiroglu, Lennart Heim,
and Marius Hobbhahn. Will we run out of data? limits of 1lm scaling based on
human-generated data, 2024.

Matt O’Brien. Ai ‘gold rush’ for chatbot training data could run out of human-
written text, June 2024.

Hasan Chowdhury and Hugh Langley. The ai world’s most valuable resource
is running out, and it’s scrambling to find an alternative: 'fake’ data, August
2024.

29

https://mlbenchmarks.org

[22]

[36]

Practical Law Intellectual Property & Technology. Key rulings on genai train-
ing and copyright fair use. Practical Law The Journal: Litigation, 7 2025. Al
Monitor, July 2025 issue.

The Authors Guild. Understanding the ai class action lawsuits. Industry &
Advocacy News.

Tiziana Terranova. Free labor. In Digital labor, pages 33-57. Routledge, 2012.
Nick Srnicek. Platform capitalism. John Wiley & Sons, 2017.

Shoshana Zuboff. The age of surveillance capitalism. In Social theory re-wired,
pages 203-213. Routledge, 2023.

Emily M Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret
Shmitchell. On the dangers of stochastic parrots: Can language models be too
big? In Proceedings of the 2021 ACM conference on fairness, accountability, and
transparency, pages 610-623, 2021.

Kate Crawford. The atlas of AI: Power, politics, and the planetary costs of artificial
intelligence. Yale University Press, 2021.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora,
Sydney von Arx, Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma
Brunskill, et al. On the opportunities and risks of foundation models. arXiv
preprint arXiv:2108.07258, 2021.

Emily M Bender and Alex Hanna. The AI Con: How to fight big tech’s hype and
create the future we want. Random House, 2025.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess,
Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling
laws for neural language models. arXiv preprint arXiv:2001.08361, 2020.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya,
Trevor Cai, Eliza Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Jo-
hannes Welbl, Aidan Clark, et al. Training compute-optimal large language
models. arXiv preprint arXiv:2203.15556, 2022.

Aaron Clauset, Cosma Rohilla Shalizi, and Mark E] Newman. Power-law
distributions in empirical data. SIAM review, 51(4):661-703, 2009.

Donald MacKenzie. An engine, not a camera: How financial models shape markets.
Mit Press, 2008.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian
Borgeaud, Dani Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler,
Ed H. Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy Liang, Jeff Dean, and
William Fedus. Emergent abilities of large language models, 2022.

Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo. Are emergent abilities

30

https://mlbenchmarks.org

[38]

[39]

[40]

[46]

[47]

of large language models a mirage? Neural Information Processing Systems
(NeurIPS), 36, 2024.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad:
100,000+ questions for machine comprehension of text. arXiv preprint
arXiv:1606.05250, 2016.

Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know:
Unanswerable questions for squad. arXiv preprint arXiv:1806.03822, 2018.

Samuel R Bowman, Gabor Angeli, Christopher Potts, and Christopher D Man-
ning. A large annotated corpus for learning natural language inference. arXiv
preprint arXiv:1508.05326, 2015.

Emily M Bender and Alexander Koller. Climbing towards nlu: On meaning,
form, and understanding in the age of data. In Proceedings of the 58th annual
meeting of the association for computational linguistics, pages 5185-5198, 2020.

Hector Levesque, Ernest Davis, and Leora Morgenstern. The winograd schema
challenge. In Thirteenth international conference on the principles of knowledge
representation and reasoning, 2012.

David Bender. Establishing a human baseline for the winograd schema chal-
lenge. In MAICS, pages 39-45, 2015.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi.
Winogrande: An adversarial winograd schema challenge at scale. Communica-
tions of the ACM, 64(9):99-106, 2021.

Denis Paperno, German Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham,
Raffaella Bernardi, Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel
Fernandez. The lambada dataset: Word prediction requiring a broad discourse
context. arXiv preprint arXiv:1606.06031, 2016.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and
Samuel Bowman. GLUE: A multi-task benchmark and analysis platform for
natural language understanding. In EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages 353-355, 2018.

Samuel R Bowman and George E Dahl. What will it take to fix benchmarking
in natural language understanding? arXiv preprint arXiv:2104.02145, 2021.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. Learning transferable visual models from natural language supervision.
In International conference on machine learning, pages 8748-8763. PmLR, 2021.

Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon,
Ross Wightman, Mehdi Cherti, Theo Coombes, Aarush Katta, Clayton Mullis,
Mitchell Wortsman, et al. Laion-5b: An open large-scale dataset for training

31

https://mlbenchmarks.org

[50]

[51]

[52]
53]
[54]
[55]

[56]

[57]

[59]

[60]

[61]

next generation image-text models. Advances in neural information processing
systems, 35:25278-25294, 2022.

Gabiriel Ilharco, Mitchell Wortsman, Ross Wightman, Cade Gordon, Nicholas
Carlini, Rohan Taori, Achal Dave, Vaishaal Shankar, Hongseok Namkoong,
John Miller, Hannaneh Hajishirzi, Ali Farhadi, and Ludwig Schmidt. Openclip,
July 2021.

Prasanna Mayilvahanan, Thaddaus Wiedemer, Evgenia Rusak, Matthias
Bethge, and Wieland Brendel. Does clip’s generalization performance mainly
stem from high train-test similarity? arXiv preprint arXiv:2310.09562, 2023.

Prasanna Mayilvahanan, Roland S Zimmermann, Thadddus Wiedemer, Evge-
nia Rusak, Attila Juhos, Matthias Bethge, and Wieland Brendel. In search of
forgotten domain generalization. arXiv preprint arXiv:2410.08258, 2024.

Claude E Shannon. Prediction and entropy of printed english. Bell system
technical journal, 30(1):50-64, 1951.

Mary Phuong and Marcus Hutter. Formal algorithms for transformers. arXiv
preprint arXiv:2207.09238, 2022.

Jay Alammar. The illustrated transformer. The Illustrated Transformer—Jay
Alammar—Visualizing Machine Learning One Concept at a Time, 27:1-2, 2018.

Alexander M Rush. The annotated transformer. In Proceedings of workshop for
NLP open source software (NLP-OSS), pages 52-60, 2018.

Tomas Mikolov, Martin Karafiat, Lukas Burget, Jan Cernocky, and Sanjeev
Khudanpur. Recurrent neural network based language model. In Interspeech,
volume 2, pages 1045-1048. Makuhari, 2010.

Maor Ivgi, Yair Carmon, and Jonathan Berant. Scaling laws under the mi-
croscope: Predicting transformer performance from small scale experiments.
arXiv preprint arXiv:2202.06387, 2022.

Nicholas Lourie, Michael Y Hu, and Kyunghyun Cho. Scaling laws are unreli-
able for downstream tasks: A reality check. arXiv preprint arXiv:2507.00885,
2025.

Amandalynne Paullada, Inioluwa Deborah Raji, Emily M Bender, Emily Den-
ton, and Alex Hanna. Data and its (dis) contents: A survey of dataset develop-
ment and use in machine learning research. Patterns, 2(11), 2021.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor
Darrell, and Saining Xie. A convnet for the 2020s. In Conference on Computer
Vision and Pattern Recognition (CVPR), pages 11976-11986, 2022.

Alex Fang, Gabriel Ilharco, Mitchell Wortsman, Yuhao Wan, Vaishaal Shankar,
Achal Dave, and Ludwig Schmidt. Data determines distributional robustness

32

https://mlbenchmarks.org

in contrastive language image pre-training (clip). In International Conference
on Machine Learning, pages 6216-6234. PMLR, 2022.

33

https://mlbenchmarks.org

	Generative models
	Language models
	Training a language model
	Get the perplexity down!

	Scaling
	Training data
	Scaling laws
	The limits of scaling laws

	Early NLP benchmarks
	CLIP and a final look at ImageNet
	Off the line?

	Notes

